Jovian Planet Systems (Chapter 11)

Based on Chapter 11

- This material will be useful for understanding Chapters 12 and 13 on "Remnants of ice and rock" and "Extrasolar planets"
- Chapters 3, 4, 5, 6, 7, 8, 9, and 10 on "Why does the Earth go around the Sun?", "Momentum, energy, and matter", "Light", "Telescopes", "Our planetary system", "Planetary geology", and "Planetary atmospheres" will be useful for understanding this chapter.

Goals for Learning

- What are the interiors of jovian planets like?
-What is the weather like on jovian planets?
-What are the moons of jovian planets like?
- How where those moons formed?
- Why do jovian planets have rings?

Jupiter and Saturn are mostly H, He with few percent of ices/rock/metal

Uranus and Neptune are mostly $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$ (compounds of hydrogen, ices) with some hydrogen/helium and few percent of rock/metals

Why are J/S different from U/N?

Saturn: $95 \mathrm{M}_{\text {Earth }}, 0.71 \mathrm{~g} / \mathrm{cm}^{3}$
Jupiter is 3 x heavier than Saturn. Why isn't it 3 x larger?
Same chemical compositions, why are the densities so different?

Adding a pillow increases the height, but not by the full width of one pillow

Pillows are compressible (squishy)

Jupiter: 318 MEarth, $1.33 \mathrm{~g} / \mathrm{cm}^{3}$ Saturn: 95 MEarth, $0.71 \mathrm{~g} / \mathrm{cm}^{3}$

Jupiter is heavier than Saturn Jupiter is more dense than Saturn

Hydrogen and helium are compressible

If you add more and more hydrogen to Jupiter, it will keep getting heavier

Will its density keep increasing? Will its radius keep increasing?

If you add a little more mass to Jupiter, then its radius will still increase

If you add a lot more mass to Jupiter, its radius will actually get smaller

Reason:

How materials, such as hydrogen, respond to changes in pressure at VERY high pressures

Rapid rotation and relatively weak gravity make Saturn 10\% wider at equator than poles

This equatorial bulge keeps moons and rings in the equatorial plane

The shapes of rocky terrestrial planets like Earth and Mars are also affected by this process despite having surfaces of solid rock
© 2006 Pearson Education, Inc., publishing as Addison Wesley

All mixed together, not separated into rocks and metals and ices

Core $=10$ Earth masses, but same size as Earth Very high density

Jupiter is not a giant gasbag
© 2006 Pearson Education, Inc., publishing as Addison Wesley
Layered structure, like terrestrial planets

Chemical composition doesn't change much with depth until the core

Layers are changes of phase Gas -> Liquid -> "Metallic"

Metallic hydrogen is a fluid, not really a solid. Liquid is at such high pressure that electrons can move freely. It conducts electricity easily. Magnetic field generated here.

Other Interiors

- Saturn = same as Jupiter
- Uranus = same as Neptune
- U/N: Hydrogen gas

Water/methane/ammonia mantle Rock/metal core

- Is mantle liquid or solid?

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Neptune

Global Winds on Jupiter

- One convection cell per hemisphere on a non-rotating planet, three per hemisphere on Earth, many on Jupiter - why?
- This leads to alternating bands of rising and falling air
- On Earth, rising air at equator makes lots of clouds and rain forests, falling air at 30 N makes few clouds and deserts
- What do you expect to happen on Jupiter?

Brown middle cloud layer covers the whole planet White top layer of ammonia clouds only form in rising air Ammonia snow falls out of clouds, as air moves north or south, then descends Descending ammonia-poor air doesn't have enough ammonia to form clouds

Brown middle cloud layer is warmer than white, high altitude ammonia cloud layer Compare visible and infra-red images

Very fast winds, hundreds of miles per hour all the time

Great Red Spot

An old, big storm

Textbooks say "Jupiter has only one Great Red Spot"

Jupiter's Red Spots
Hubble Space Telescope • Advanced Camera for Surveys

Weather on other jovian planets

- What causes bands on Jupiter? Should we see them on the other jovian planets?
-Which of the jovian planets have seasons? What information do you need to answer?

Jupiter, Saturn, Uranus, and Neptune all have dramatic weather patterns

Jupiter, Saturn, and Neptune all have banding Saturn and Neptune don't show seasonal changes, despite 20° axial tilt - internal heat? Large storm, Great Dark Spot, seen on Neptune, but vanished 6 years later

Uranus had no storms/banding 20 years ago, but does now. Strong seasons likely due to large axial tilt and lack of any internal heat.

[^0]
MOONS

Lots of moons, lots of diversity
Small: <300 km diameter, no geological activity

Medium: 300-1500 km diameter, past geological activity

Large: >1500 km diameter, present geological activity

Made of 50\% ice, 50\% rock, unlike objects in the inner solar system

Orbits and Rotation

- Most medium and large moons
- Circular orbits in planet's equatorial plane
- Orbit in same direction as planet's rotation
- So formed by accretion in mini-nebula around planet, not captured later
- Rotate once per orbit, like Earth's moon, due to tidal forces from planet
- Small moons
- Irregular orbits, not always circular, not always in equatorial plane, not always in expected direction
- Mostly captured objects

Where do the names come from?
Each planet has a theme for the names of its moons.
Jupiter: Lovers of Jupiter and related Greek/Roman mythological names
Saturn: Titans, giants conquered by Jupiter in Roman mythology
Uranus: Characters from Shakespeare
Neptune: Greek/Roman mythological characters related to the sea

The four Galilean satellites of Jupiter. Unresolved points of light until 1980.
lo: Volcanoes, very active
Europa: Ice crust above a liquid water ocean, active surface
Ganymede: Some old regions, some young regions, also an internal ocean
Callisto: Heavily cratered iceball

Composition trend
lo: Mostly rock, some ice
Callisto: Mostly ice, some rock

Lava is accompanied by sulphur and sulphur dioxide gas Condensed sulphur = red, orange.
Condensed sulphur dioxide = white
All this gas gives lo a thin atmosphere

April 1997
Complete red ring

September 1997
Large black patch appeared

July 1999
Red material starts to cover up black patch

Unusual lo

- Active volcanism needs interior heat
- What sources of interior heat have we discussed so far?
- Which of them might be heating lo?

Answer - None of them work

Tides

Moon causes tides on Earth oceans and rocks

Earth causes

 tides in theMoon as well
Jupiter causes tides on lo
lo's orbit is elliptical

Why doesn't lo's orbit become circular?

Europa and Ganymede stop it
lo gets pulled outwards each time it comes close to Europa

This always happens when lo is furthest from Jupiter ("Aphelion" ...)

Keeps lo's orbit elliptical

Europa
© 2006 Pearson Education, Inc., publishing as Addison Wesley

Surface is only tens of millions of years old (very few large craters)

Some regions look like blocks of ice trapped when liquid water froze solid
Double-ridges may have formed as tidal flexing opens and closes crack in ice crust
Lots of geological evidence for sub-surface water beneath 10 km (approx) of ice Geology alone doesn't exclude possibility of warm, deformable ice at depth

Europa has a weak magnetic field that is "induced" by Jupiter's magnetic field Salty subsurface ocean can conduct electricity, convecting ice cannot

This discovery is about 10 years old
© 2006 Pearson Education, Inc., publishing as Addison Wesley

Ganymede and Callisto

- Not as interesting as lo or Europa

Titan: Saturn's largest moon
Thick atmosphere
What gases do you think could be in Titan's atmosphere?

Remember Venus, Earth, and Mars

Titan: Saturn's largest moon

Thick atmosphere
Mostly N_{2}, like Earth Some CH_{4}, methane

UV light from Sun breaks CH_{4} molecules apart.

Fragments react with N_{2} and CH_{4} to make new molecules

Imagine a gasoline refinery

What does life need?
Is Titan a potential home for life?

Dark, smooth terrain looks like playas from the southwestern USA Infrequent heavy rainfall causes flash-floods, lots of erosion, carries material into low-lying areas. Liquid then evaporates or seeps into the ground, leaving dirt behind

Liquid hydrocarbons, not water. Methane rain, not water. Erupting slushy ice, not lava. Earth-like?

All heavily cratered, old surfaces. Only Mimas has no evidence of past volcanism or tectonism. Enceladus south pole is young surface, hot, outgassing - why?

Triton's southern hemisphere as seen by Voyager 2.

This close-up shows lava-filled impact basins similar to the lunar maria, but the lava was water or slush rather than molten rock.

Lots of past geological activity, volcanism, tectonism
Currently outgassing (geysers?) and has a thin atmosphere Very unexpected discoveries at the end of the Voyager 2 "Grand Tour"
© 2006 Pearson Education, Inc., publishing as Addison Wesley

Differences

- Which are most geologically active?
- Moon, Mercury, Io, Europa, Titan
- What reasons can you think of for this difference?

Saturn's Rings

Everything is controlled by gravity - $\mathrm{GM}_{1} \mathrm{M}_{2} / \mathrm{R}^{2}$

Lots and lots of structure
Rings are $<100 \mathrm{~m}$ thick, made of many icy particles from specks to boulders in size

1

(1)
號
$=$

P18

Jovian Planet Rings

- All of them have rings, Saturn's are most dramatic
- Ring particles are orbiting just like tiny moons
- Ring particles orbit in equatorial plane, with circular orbits, going in same direction as planet's rotation
- Why is ring plane so thin? Why are orbits all circular, not elliptical? Does this remind you of anything else from this class?

Saturn Ring-Plane Crossing

Hubble Space Telescope - Wide Field Planetary Camera 2

Some small moons create gaps within the rings

Observe ripples in edges of rings caused by small moon

Some small moons act in pairs to trap a narrow ring between them
Picture is hard to see

An orbital resonance with the moon Mimas created this gap in the rings Observe spiral bright/dark waves
© 2006 Pearson Education, Inc., publishing as Addison Wesley

Ring Complexities

- Gravity $\mathrm{GM}_{1} \mathrm{M}_{2} / \mathrm{R}^{2}$
- Interactions between ring particles and other ring particles
- Interactions between ring particles and small, nearby moons
- Interactions between ring particles and large, distant moons through orbital resonances

Lots of small moons formed in equatorial plane during the birth of the solar system

Strong tidal forces prevent small moons
Nbecoming large moons close to the planet

Tiny impacts will blast particles off surfaces of these moons

Moons are large enough and numerous enough that there are still some left today, 4.5 billion years after solar system birth

Small impacts on small moons release small, dust-sized particles

Larger impacts on small moons release larger, boulder-sized particles

Sometimes an impact will shatter a small moon apart completely

Impactors can be ring particles themselves or objects from outside the Saturn system

Are Saturn's rings brighter than those of other planets because of some special property of Saturn or just by chance?

Goals for Learning

- What are the interiors of jovian planets like?
-What is the weather like on jovian planets?
-What are the moons of jovian planets like?
- How where those moons formed?
- Why do jovian planets have rings?

Goals for Learning

- What are the interiors of jovian planets like?
- Jupiter and Saturn are mostly hydrogen, with layers of gas, liquid, and metallic hydrogen above a rock/ice core
- Uranus and Neptune have a thinner outer layer of hydrogen, a thick ice mantle, and a rock core
- The nebular theory explains these differences

Goals for Learning

-What is the weather like on jovian planets?

- Clouds of water and ammonia on Jupiter and Saturn, clouds of methane on Uranus and Neptune
- Circulation cells are broken into narrow bands by rapid rotation
- Fast winds
- Great Red Spot

Goals for Learning

-What are the moons of jovian planets like?

- Large moons are geologically active, mediumsized moons show evidence of past activity, small moons are rugged ice potatoes
- lo has active volcanoes due to Jupiter's tides
- Europa has a liquid water ocean beneath a frozen ice crust
- Titan has a dense and chemically interesting atmosphere

Goals for Learning

- How where those moons formed?
- Most large moons formed in mini-nebulas around their planet just like planets around the Sun
- Many small moons were captured by the gassy mini-nebula around each planet
- Triton, a large moon of Neptune, was probably captured as well

Goals for Learning

-Why do jovian planets have rings?

- Ring particles cannot survive for the age of the solar system, they must be continually produced
- Impacts onto moons create debris that becomes ring particles
- The size and brightness of rings change over the course of the solar system
- http://www.solarviews.com/raw/iup/iovolc2. gif
- http://www.solarviews.com/browse/jup/iopl ume.jpg
- http://www. planetaryexploration.net/jupiter/ io/images/pele three 02501.jpg
- http://imgsrc.hubblesite.org/hu/db/2006/19/ images/a/formats/print.jpg

[^0]: © 2006 Pearson Education, Inc., publishing as Addison Wesley

