Our Planetary System (Chapter 7)

Based on Chapter 7

- This material will be useful for understanding Chapters 8, 9, 10, 11, and 12 on "Formation of the solar system", "Planetary geology", "Planetary atmospheres", "Jovian planet systems", and "Remnants of ice and rock"
- Chapters 3 and 6 on "The orbits of the planets" and "Telescopes" will be useful for understanding this chapter

Goals for Learning

- How do planets rotate on their axes and orbit the Sun?
- What are the planets made of?
- What other classes of objects are there in the solar system?

Orbits mostly lie in the same flat plane

All planets go around the Sun in the same direction

Most orbits are close to circular

Not
Punto xi_{-9}
coincidences!

Planetary equators mostly lie in the same plane as their orbits

Coincidence?
Most planets rotate in the same "sense" as they orbit the Sun

Coincidence?

- Interactive Figure: Orbital and Rotational Properties of the Planets

Rotation and Orbits of Moons

- Most moons (especially the larger ones) orbit in near-circular orbits in the same plane as the equator of their parent planet
- Most moons rotate so that their equator is in the plane of their orbit
- Most moons rotate in the same "sense" as their orbit around the parent planet
- Everything is rotating/orbiting in the same direction

© 2006 Pearson Education, Inc., publishing as Addison Wesley

A Brief Tour

- Distance from Sun
- Size
- Mass
- Composition
- Temperature
- Rings/Moons

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Mercury

0.39 AU
 $2440 \mathrm{~km}, 0.38 \mathrm{R}_{\text {Earth }}$

$0.055 \mathrm{M}_{\text {Earth }}$
Rocky exterior, iron interior
700 K (day), 100 K (night) No atmosphere

Unusual rotation 58.6 day rotation, 87.9 day orbit

Earth

1 AU
$6378 \mathrm{~km}, 1 \mathrm{R}_{\text {Earth }}$
$1 \mathrm{M}_{\text {Earth }}$
Rocky exterior, iron interior

Moon Sizes to scale
Distance should be 1 m apart

Oceans and atmosphere 290 K
1 large moon (relatively large)
Life
© 2006 Pearson Education, Inc., publishing as Addison Wesley
Mars
Thin atmosphere Past liquid water Flood channels, riverbeds Old volcanoes Polar ice caps
1.52 AU $3397 \mathrm{~km}, 0.53 \mathrm{R}_{\text {Earth }}$ $0.11 \mathrm{M}_{\text {Earth }}$ Rocky exterior, iron interior 220 K surface

2 small moons

Past life? Present life?

These surfaces have been affected by flowing water

- A - Mercury, Mars
- B - Venus, Earth, Moon
- C - Earth, Mars
- D - Venus, Moon, Mars

These bodies have atmospheres

- A - Venus, Moon, Mars
- B - Mercury, Earth, Mars
- C - Mercury, Moon, Earth
- D - Venus, Earth, Mars

Asteroids

Most of them are much smaller than planets

A few are hundreds of km in radius

Thousands of them

Some asteroids - first pictures 15 years ago

Rocky exterior and interior No atmosphere Not shaped like a sphere Where meteorites come from Orbits affected by Jupiter

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Jupiter
 5.20 AU
 71492 km, 11.2 $\mathrm{R}_{\text {Earth }}$ $318 \mathrm{M}_{\text {Earth }}$
 Hydrogen and helium
 125K at cloud tops

>63 moons
Thin, faint rings

© 2006 Pearson Education, Inc., publishing as Addison Wesley

These four large moons were discovered by Galileo - the Galilean satellites
~2000 km radius
Ice/rock composition
lo has active volcanoes
Europa is covered in an ice shell with a liquid water ocean below They are worlds in their own right

Saturn

2006 Pearson Education, Inc., publishing as Addison Wesley

9.54 AU	95 K at cloud tops
$60268 \mathrm{~km}, 9.4 \mathrm{R}_{\text {Earth }}$	>47 moons
$95.2 \mathrm{M}_{\text {Earth }}$	Bright rings
Hydrogen and helium	Less dense than water

[^0]

Pluto and its largest moon, Charon

39.5 AU

Very elliptical, inclined orbit
$1160 \mathrm{~km}, 0.18 \mathrm{R}_{\text {Earth }}$
$0.0022 \mathrm{M}_{\text {Earth }}$
40 K surface temperature
Thin atmosphere Ice/rock composition

Charon's radius is more than half that of Pluto - a very large moon

2 tiny moons discovered in 2005
Is Pluto a planet?
Many objects similar to Pluto have similar orbits to Pluto

Kuiper Belt Objects

These planets have rings

- A - Venus, Jupiter, Neptune
- B - Jupiter, Uranus, Neptune
- C - Mars, Saturn, Uranus
- D - Saturn, Neptune, Pluto

These planets have more than one moon

- A - Mars, Jupiter, Pluto
- B - Mercury, Saturn, Neptune
- C - Earth, Uranus, Pluto
- D - Venus, Jupiter, Saturn

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Photo	Planet	Relative Size	Average Distance from Sun ($A U$)	Average Equatorial Radius (km)	$\begin{gathered} \text { Mass } \\ (\text { Eorth }=1) \end{gathered}$	$\begin{array}{r} \text { A } \\ \text { Average } \\ \text { Density } \\ \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{array}$	Orbital Period	Rotation Period	Axis Tilt	verage Surface (or Cloud Tops) Temperature ${ }^{\dagger}$	Composition	Known Moons (2005)	Rings?
	Mercury	,	0.387	2,440	0.055	5.43	87.9 days	58.6 days	0.0°	$\begin{gathered} 700 \mathrm{~K} \text { (day) } \\ 100 \mathrm{~K} \text { (night) } \end{gathered}$	Rocks, metals	0	No
	Venus	*	0.723	6,051	0.82	5.24	225 days	243 days	177.3°	740 K	Rocks, metals	0	No
	Earth	*	1.00	6,378	1.00	5.52	1.00 year	23.93 hours	$23.5{ }^{\circ}$	290 K	Rocks, metals	1	No
	Mars	-	1.52	3,397	0.11	3.93	1.88 years	24.6 hours	25.2°	220 K	Rocks, metals	2	No
	Jupiter		5.20	71,492	318	1.33	11.9 years	9.93 hours	$3.1{ }^{\circ}$	125 K	H, He, hydrogen compounds ${ }^{\text {s }}$	63	Yes
	Saturn		9.54	60,268	95.2	0.70	29.4 years	10.6 hours	$26.7{ }^{\circ}$	95 K	H, He, hydrogen compounds ${ }^{5}$	47	Yes
	Uranus		19.2	25,559	14.5	1.32	83.8 years	17.2 hours	$97.9{ }^{\circ}$	60 K	H, He, hydrogen compounds ${ }^{9}$	27	Yes
	Neptune		30.1	24,764	17.1	1.64	165 years	16.1 hours	$29.6{ }^{\circ}$	60 K	H, He, hydrogen compounds ${ }^{5}$	13	Yes
	Pluto	-	39.5	1,160	0.0022	2.0	248 years	6.39 days	112.5°	40 K	Ices, rock	1	No
	Planet X^{\ddagger}	-	67.9	1,430	?	?	560 years	?	?	?	Ices, rock	1	?

[^1]Summary from textbook
8 2006 Pearson Education, Inc., publishing as Addison Wesley

List as many differences as you can between the inner planets (such as Earth) and the outer planets (such as Jupiter)

Table 7.2 Comparison of Terrestrial and Jovian Planets

Terrestrial Planets	Jovian Planets
Smaller size and mass	Larger size and mass
Higher density	Lower density
Made mostly of rock and metal	Made mostly of hydrogen, helium, and hydrogen compounds
Solid surface	No solid surface
Few (if any) moons and no rings	Rings and many moons
Closer to the Sun (and closer together), with warmer surfaces	Farther from the Sun (and farther apart), with cool temperatures at cloud tops

Terrestrial PlanetsLarger size and massLower densityMade mostly of hydrogen, helium,and hydrogen compounds

No solid surface
Rings and many moons

Farther from the Sun (and farther apart), with cool temperatures at cloud tops
© 2006 Pearson Education, Inc., publishing as Addison Wesley

Patterns in the Solar System

- Patterns of motion (orbits and rotations)
- Two types of planets: Small, rocky inner planets and large, gas outer planets
- Many small asteroids and comets whose orbits and compositions are similar
- Exceptions to these patterns, such as Earth's large moon and Uranus's sideways tilt

Patterns of Motion

- All planetary orbits are nearly circular
- All planets orbit the Sun in the same direction: counter-clockwise as viewed from high above Earth's North Pole
- Most planets rotate in the same direction in which they orbit (counter-clockwise from above North Pole) with small axis tilts. The Sun also rotates in this direction
- Most large moons exhibit similar properties in their orbits/rotations

Two Types of Planets

- Terrestrial planets (Mercury, Venus, Earth, Mars)
- Small, dense, rocky exteriors, iron interiors
- Few moons, no rings
- Jovian planets (Jupiter, Saturn, Uranus, Neptune)
- Large, less dense, hydrogen/helium composition. Uranus and Neptune also contain lots of hydrogen compounds
- Many moons, rings
- Pluto doesn't fit either category

Asteroids and Comets

- Asteroids are small, rocky bodies that orbit the Sun. Most are found in the asteroid belt between Mars and Jupiter. There are many asteroids.
- Comets are small, icy bodies that orbit the Sun. Comets have very elliptical orbits, only becoming visible when they form tails in the inner solar system. There are many comets.

Exceptions

- Uranus is tilted sideways
- Earth's Moon is very large
- Venus rotates backwards
- Small moons often have backwards or inclined orbits
- Pluto isn't a terrestrial or jovian planet

1. Large bodies in the solar system have orderly motions.

All planets and most satellites have nearly circular orbits going in the same direction in nearly the same plane. The Sun and most of the planets rotate in this same direction as well.

3. Swarms of asteroids and comets populate the solar system. Asteroids are concentrated in the asteroid belt, and comets populate the regions known as the Kuiper belt and the Oort cloud.
2. The first eight planets fall into two major categories: small, rocky terrestrial planets near the Sun and large, hydrogen-rich jovian planets farther out. The jovian planets have many moons and rings made of rock and ice.

4. Several notable exceptions to these general trends stand out, such as planets with unusual axis tilts or surprisingly large moons, and moons with unusual orbits.

These four

 characteristics must be explained by any theory that claims to describe how the solar system was formed
Calculation Exercise

- What equation relates radius and volume for a sphere?
- Earth radius $=6.4 \times 10^{3} \mathrm{~km}=6.4 \times 10^{6} \mathrm{~m}$
- What is Earth's volume?
- Jupiter radius $=7.1 \times 10^{4} \mathrm{~km}=7.1 \times 10^{7} \mathrm{~m}$
- What is Jupiter's volume?
- How many times larger is Jupiter's radius than Earth's?
- How many times larger is Jupiter's volume than Earth's?

Calculation Exercise

- Earth's volume $=1.1 \times 10^{21} \mathrm{~m}^{3}$
- Earth's density $=5.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
- What is Earth's mass?
- Jupiter's volume $=1.5 \times 10^{24} \mathrm{~m}^{3}$
- Jupiter's density $=1.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
- What is Jupiter's mass?
- How many times larger is Jupiter's mass than Earth's?

Spacecraft Exploration

- Telescopes have limits
- What are some of the advantages of spacecraft?

1960s spacecraft
Mariner 4 (Mars flyby)
Lunar Surveyor (Moon lander) Ranger (Moon impactor)

2000s spacecraft
Spirit (Mars rover)
New Horizons (Pluto flyby) Venus Express (Venus orbiter)

Advantages of Spacecraft

- Better resolution for cameras (all wavelengths) as closer to planet
- Sometimes you just have to be there to make a measurement - there are no "telescopic rock hardness testers"
- Process a sample with a chemistry set
- Active experiments - hit something and see how it responds

Types of Spacecraft

- Flyby - Go past a planet once only
- Orbiter - Orbit a planet, repeated studies
- Lander/Probe/Rover - Touch a planet's surface/atmosphere, localized studies
- Sample return - Bring a piece back to Earth
- Human missions - Have astronauts making decisions, not a computer

Goals for Learning

- How do planets rotate on their axes and orbit the Sun?
- What are the planets made of?
- What other classes of objects are there in the solar system?

Goals for Learning

- How do planets rotate on their axes and orbit the Sun?
- The planets orbit the Sun in the same plane and same direction
- The rotational axes of most planets are almost perpendicular to their orbital planes
- The rotations and orbits of many large moons behave similarly

Goals for Learning

- What are the planets made of?
- 4 small, inner, solid planets made of metal cores and rock mantles
- 4 large, outer, gas planets made of hydrogen outer layers and cores of rock and ice

Goals for Learning

- What other classes of objects are there in the solar system?
- Moons: Rocky satellites of terrestrial planets, few in number, and ice satellites of jovian planets, many in number
- Asteroids: Small rock bodies that orbit the Sun, mostly between Mars and Jupiter
- Comets: small ice bodies that orbit the Sun, mostly in very elliptical orbits
- http://nssdc.gsfc.nasa.gov/planetary/lunar/ranger.gif
- http://nssdc.gsfc.nasa.gov/planetary/lunar/surveyor.gif
- http://nssdc.gsfc.nasa.gov/image/spacecraft/mariner04.g if
- http://nssdc.gsfc.nasa.gov/planetary/image/mars2003_ro ver.jpg
- http://nssdc.gsfc.nasa.gov/planetary/image/venus expre ss.jpg
- http://nssdc.gsfc.nasa.gov/planetary/image/new_horizon s.jpg

[^0]: © 2006 Pearson Education, Inc., publishing as Addison Wesley

[^1]: Appendia E gives a mare compkte list of phanetary properties. Surface temper

