Predicting radio occultation uncertainties

Paul Withers

Center for Space Physics,
Boston University
(withers@bu.edu)

MEX/VEX Radio Science Meeting
2010.08.03-04
Sugarbowl, Nevada
Motivation and Approach

• I want to propose an RS instrument.
 – How do I know what instrumental properties are required to achieve scientific goals?
 – How do I convince reviewers that the instrument requirements I claim are correct?
 – Also useful for understanding old datasets

• Approach
 – Aim for back-of-the-envelope, order-of-magnitude calculation
 – Try to keep physical explanations in mind, not blinded by equations
Usual relationship between bending angle, α, and refractive index, μ
Assume exponential shape for refractivity, ν, profile, reasonable for high altitudes

After some algebra and some assumptions that various things are “small”, obtain this equation

$$\alpha_j(a_j) = -2a_j \int_{r=r_j}^{r=\infty} \frac{d \ln \mu(r)}{dr} \frac{dr}{\sqrt{(\mu(r)r)^2 - a_j^2}}$$

$$\nu(r) = \nu_j \exp \left(\frac{-(r-r_j)}{H} \right)$$

$$\alpha(a) = \nu(r) \sqrt{\frac{2\pi a}{H}}$$

Approximate relationship between frequency, f, and bending angle, α, that assumes “small” bending angle

Relationship between frequency shift, Δf, and refractivity, ν.

Can now relate instrumental properties to smallest detectable Δf and atmospheric properties to smallest detectable refractivity

$$\frac{\Delta f}{f} \approx \frac{V \alpha}{c}$$

$$\Delta f(a) \approx \frac{fV \nu(r)}{c} \sqrt{\frac{2\pi a}{H}}$$
Frequency uncertainties

\[s(t) = A(t) \sin(2\pi f(t)t) + \theta(t) \]

Signal s

Thermal noise

Phase noise characterizes variations in f (Allan deviation)

Ignore variations in amplitude A

Thermal noise

\[\sigma_{thermal} = \frac{\sqrt{2BN_0/C}}{2\pi\tau_{thermal}} \]

2B = Noise bandwidth (Hz)

\(N_0 \) = Noise power (W Hz\(^{-1}\))

C = Signal power (W)

\(\tau \)-thermal = Time interval (s)

Suppose signal amplitude is \(A \sin \phi + \theta \)

Need \(A \sin \phi > \theta \) to recognize end of one cycle

For small \(\theta/A \), uncertainty in phase is therefore \(\theta/A \)

Hence uncertainty in phase is \(\sqrt{\frac{2BN_0/C}{C}} \)

Uncertainty in number of cycles in \(\tau \)-thermal is

\[\frac{\sqrt{2BN_0/C}}{2\pi} \]

Uncertainty in frequency is \(\frac{\sqrt{2BN_0/C}}{2\pi \tau \text{-thermal}} \)
Geophysical uncertainties

Uncertainty in velocity for gravity tracking flyby dominated by thermal noise in one-way mode

\[\sigma_V = \frac{c \sqrt{2BN_0/C}}{2\pi f \tau_{\text{thermal}}} \]

Uncertainty in electron density after inserting expression for ionospheric refractivity

\[\sigma_{Ne} \approx \frac{4\pi \sigma_{\Delta f} f cm_e \epsilon_0}{V e^2} \sqrt{\frac{2\pi H_p}{R}} \]

Uncertainty in neutral number density after inserting expression for neutral atmospheric refractivity

\[\sigma_{nn} \approx \frac{c \sigma_{\Delta f}}{V f \kappa} \sqrt{\frac{H_n}{2\pi R}} \]

Dependence on \(\sigma_{\Delta f} \), frequency f, speed V, \((H/R)^{0.5}\), refractive volume \(\kappa \)

Nature and NASA define V, \((H/R)^{0.5}\) and \(\kappa \)

This leaves f and \(\sigma_{\Delta f} \) for the experimenter to influence
Venus (VEX) – Ne uncertainty is predicted well, but neutral uncertainty is 10x smaller than smallest pressure (1 Pa) reported in Tellmann et al. (2009), perhaps due to not reporting pressure at upper boundary with fixed T

Mars (MGS) – Predictions are within 50% of mean observed uncertainties

Jupiter (Voyager) – Predicted Ne uncertainty agrees with Hinson et al. (1998), but predicted neutral uncertainty is 100-1000x smaller than Lindal et al. (1981). Perhaps Lindal used very different bandwidths and integration times than Hinson…?

Titan (Cassini) – Predicted uncertainties are at least 10x too large due to assumed 10 mHz frequency uncertainty being too large, but this work predicts Δf of 1 mHz at Ne=1E9 cm⁻³ which agrees with Kliore et al. (2008)

<table>
<thead>
<tr>
<th></th>
<th>Venus</th>
<th>Mars</th>
<th>Jupiter</th>
<th>Titan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\Delta f}$ (mHz)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>f (GHz)</td>
<td>8.4^g</td>
<td>8.4^k</td>
<td>2.3^o</td>
<td>2.3^s</td>
</tr>
<tr>
<td>V (km s⁻¹)</td>
<td>7.0^h</td>
<td>3.4^l</td>
<td>14^p</td>
<td>5.6^f</td>
</tr>
<tr>
<td>H_n (km)</td>
<td>7^i</td>
<td>10^m</td>
<td>25^q</td>
<td>20^u</td>
</tr>
<tr>
<td>H_p (km)</td>
<td>10^j</td>
<td>25^n</td>
<td>1000^r</td>
<td>130^v</td>
</tr>
<tr>
<td>R (km)</td>
<td>6050</td>
<td>3400</td>
<td>$70,000$</td>
<td>2575</td>
</tr>
<tr>
<td>κ (m⁻³)</td>
<td>1.8×10^{-29}</td>
<td>1.8×10^{-29}</td>
<td>6.2×10^{-30}</td>
<td>1.1×10^{-29}</td>
</tr>
<tr>
<td>α (rad⁻¹)</td>
<td>2.7×10^{-2}</td>
<td>1.8×10^{-4}</td>
<td>3.6×10^{-2}</td>
<td>3.6×10^{-2}</td>
</tr>
<tr>
<td>Δf (Hz)</td>
<td>5.4×10^3</td>
<td>1.7×10^1</td>
<td>3.9×10^3</td>
<td>1.5×10^3</td>
</tr>
<tr>
<td>σ_{Ne} (m⁻³)</td>
<td>1.5×10^9</td>
<td>6.3×10^9</td>
<td>5.8×10^8</td>
<td>2.7×10^9</td>
</tr>
<tr>
<td>σ_{mm} (m⁻³)</td>
<td>3.8×10^{19}</td>
<td>1.3×10^{20}</td>
<td>1.1×10^{20}</td>
<td>7.4×10^{20}</td>
</tr>
</tbody>
</table>

10 mHz guess based on MGS Everyone reports an Allan dev., but never thermal noise