Radio tracking of Phoenix during its landing on Mars

Paul Withers

Center for Space Physics,
Boston University
(withers@bu.edu)

MEX/VEX Radio Science Meeting
2010.03.18-19
Bonn, Germany
Phoenix atmospheric entry

- 25 May 2008
- Landing site at
 - 68.2N, 234.3E
 - -4.1 km (MOLA)
- Ls=77, LST ~16:30
- Ballistic entry with many similarities to Pathfinder and MER
- Accelerometers and gyroscopes on board
Smoothed axial accelerations

Use entry state, equations of motion, and these accelerations to find trajectory.
Atmospheric profile

Use trajectory, drag equation, aerodynamics to find density profile, then p and T
Possible alternative

• Many landers have direct-to-Earth comm link during atmospheric entry
• Can such data be used in near-real-time to measure trajectory and atmosphere?
 – Potentially valuable to engineers, to public, and as science
• (Sounds a lot like a Doppler Wind Experiment, but...)
Why bother?

• Independent reconstruction of trajectory
• Rapid results for:
 – Engineers (Where did we land? Nominal?)
 – Public (See results immediately)
 – Science (What are atmospheric conditions?)
• Get results even if lander explodes when reaching ground
Basic approach

• Have entry state, know gravity as function of position
• Need to know vector aerodynamic acceleration at each timestep to find total acceleration and move trajectory forwards in time

• Measure f(t), know line-of-sight velocity as function of time
Detailed approach

Measured: \(v \cdot l_0 \)

Obvious: \(v_1 = v_0 + a \, dt \) \(a = a_{aero} + g \)

Re-arrange:

\[
v_1 \cdot l_0 = v_0 \cdot l_0 + a \cdot l_0 \, dt
\]

Re-arrange:

\[
a_{aero} \cdot l_0 = \frac{1}{dt} \left(v_1 \cdot l_0 - v_0 \cdot l_0 \right) - g \cdot l_0
\]

Big assumption:

\(a_{aero} = -k \cdot v_0 \)

Outcome is expression for \(a_{aero} \) using known quantities

\[
a_{aero} = \frac{-v_0}{v_0 \cdot l_0} \left[\frac{1}{dt} \left(v_1 \cdot l_0 - v_0 \cdot l_0 \right) - g \cdot l_0 \right]
\]
Next steps

- Find $f(t)$ for Phoenix direct-to-Earth link
- See if this technique works
- Compare to results of accelerometer-based reconstruction
- Objective is proof-of-concept, not best possible accuracy
- This may have the potential to be a useful tool supporting many future landers (eg MSL)