Empirical predictions of martian surface pressure in support of the landing of Mars Science Laboratory

> Paul Withers withers@bu.edu

IPPW meeting Toulouse, France 2012.06.19

Surface pressure depends on altitude and season

Everything else is secondary Can an empirical model that depends on only Ls and z perform well?

VL1 data have simple seasonal trend

This fit is p = p0(1 + s1sin(Ls) + c1 cos(Ls) + s2 sin(2Ls) + c2 cos(2Ls)) where p0 = 7.792 mbar, s1 = -0.069, c1 = 0.060, s2 = 0.045, and c2 = -0.050

Ppred = P(VL1 fit) x exp(-z/H)

Test above function using thousands of MGS radio occultation surface pressure measurements for various H H = 11 km works well

Latitudes and seasons of MGS data

Predictions for MGS data are very good at Ls=150, MSL EDL season

Predictions are less good during Ls=255-340 when dust storms are common

Predictions are good for VL2 data

Predictions are OK for MPF, considering calibration issue

MPF surface pressures are consistently smaller than expected by 0.1 mbar due to a calibration issue Diamonds and grey points are data, solid line is predictions, dashed line is VL1 data at near-identical z

Predictions are good for Phoenix

Predictions for MSL will be tested

Eberswalde: black solid line, Holder Crater Fan: black dashed line, Mawrth Vallis – Site 2: grey dashed line

MSL will land at Gale Crater (grey solid line) at Ls=150

Conclusions

Surface pressure is crucial for safe EDL on Mars

- Complicated models are complicated, here we develop a simple empirical prediction as a sanity check
- We estimate a diurnal mean surface pressure of 7.30 mbar at Gale Crater with a 1-sigma confidence interval of 2%

The main weakness in this work is the limited local time coverage of the MGS data that constrained H to be 11 km