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A radio signal is attenuated as it passes through a planetary
ionosphere. This attenuation depends on the radio frequency, the
electron-neutral collision frequency, and the vertical profile of
electron density. Thus the attenuation varies with changes in
lonospheric conditions. In particular, extreme solar events, such as
intense solar flares or solar energetic particle events, that increase
lonospheric electron densities at altitudes below 100 km may cause
significantly enhanced attentuation. Such attenuation has the
potential to degrade the performance of radio communications and
navigation systems at Mars. It can also disrupt observations by the
MARSIS topside radar sounder on Mars Express. We have
developed theoretical expressions for the attenuation caused by a
layer of ionospheric plasma. In this presentation, we shall use these
results to explore how the attenuation depends on radio frequency
and layer altitude, electron density, and width. We shall focus on
three plasma layers - the M1 layer produced at 100 km by solar soft
X-rays, the meteoric layer produced at 85 km by meteoroid ablation,
and a potential layer at 35 km that theorists have predicted is
caused by precipitating energetic particles. We shall also report on
the implications for understanding surface reflection blackouts that
afflict the MARSIS instrument for periods of days to weeks after
solar energetic particle events.



Solar energetic particle (SEP)
events disrupt radar
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Probable explanation

Radio signals passing through a weak
plasma are attenuated due to collisions
between neutrals and excited electrons

Attenuation strongest for low-altitude
plasma where neutral density is high

SEP event causes enhanced electron
densities at some low altitude, sufficient to
cause 13 dB one-way power loss at 5 MHz

Need to have global mechanism that
works on both dayside and nightside



Attenuation theory (1)

W Complex refractive index, p,
. ® = radio wave frequency
W (w o ZV) o, = plasma frequency
v = electron-neutral collision frequency
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Expression for real part of refractive index, .

2:0

2 (1 L w2/w2) For high radio frequencies, the above expression
p simplifies greatly o >>v

Radio waves don’t propagate into regions where

bz <0

Highlights importance of max plasma frequency



Attenuation theory (2)

—w? 0 ki = imaginary wavenumber of radio wave
k; = —K i K = amplitude absorption coefficient per unit

2, U2+ w2 length

% = exp (— [ Kds) = |exp (- [ Kaz)

Ratio of received energy, Er, to transmitted energy, Et, depends on K and
angle OZA between ray path and vertical (ie “orbiter zenith angle”)

sec(OZA)

P (dB) = —201log,y (E,/E;) = 201log,, (e) sec (OZA) (/ Kdz)

Expression for one-way power loss in decibels
Effects of multiple plasma layers are additive
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M2 layer produced
by solar EUV photons

Very similar to classical
Chapman layer

Subsolar peak altitude
is 120 km
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Lower ionospheric layer (M1)
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M1 layer produced
by solar X-ray photons

Highly variable since X-ray flux varies
Red line shown here corresponds
to a solar flare and strong M1 layer

Subsolar peak altitude
is 100 km
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by meteoroid ablation
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lons produced by cosmic rays

Negative ions significant at
low altitudes

Layer of electrons is
predicted — but not yet
observed

Typical peak altitude is
35 km

Typical peak density is
108 m-3



Lots and lots of math...

* Assume Chapman layer shape

« Derive expressions for power loss as function of
peak density and altitude

* Three cases for power loss expression

— o > v at all altitudes with significant plasma
High radio frequencies or high peak altitude

— o < v at all altitudes with significant plasma
Low radio frequencies or low peak altitude

— Intermediate case

* Results consistent with full numerical integration



High frequency limit

* Power loss is proportional to
— Layer width
— Layer peak density
— (Radio frequency)2

« Complete expression derived, but not
shown here



Low frequency limit

* Power loss is proportional to
— Layer width
— Layer peak density
— (Electron-neutral collision frequency at layer
peak)’

« Complete expression derived, but not
shown here



Power loss (dB) as function of peak
altitude and peak density in layer
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Different behaviours at high and low peak altitudes
High altitudes imply high radio frequency limit
Low altitudes imply low radio frequency limit



Power loss in M2 layer as function
of peak density and frequency
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Power loss in M1 layer as function

of peak density and frequency
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Power loss in meteoric ion layer as
function of peak density and frequency
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Power loss in layer of ions produced by
cosmic rays as function of peak density
and frequency
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Power loss for four ionospheric
layers under typical conditions
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Black solid line — M2 layer

Black dotted line — M1 layer Cross is the 13 dB required
Black dashed line — Meteoric ion layer for MARSIS blackouts at 5 MHz
Grey solid line — Layer produced by cosmic rays



Layer peak densities needed to
produced MARSIS blackouts
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Conclusions

Analytic expressions derived for the power loss caused
by an ionospheric layer (not shown)

Frequency-dependent power loss calculated for several
lonospheric layers

lonospheric characteristics required to explain
observations of MARSIS blackouts during SEP events
predicted

Next step — Simulate ionospheric electron density profile
during SEP event
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