Space weather effects on the Mars ionosphere due to solar flares and meteors

Paul Withers¹, Michael Mendillo¹, and Dave Hinson²
1 - Boston University, USA
2 – Stanford University, USA
(withers@bu.edu)

EPSC2006-A-00190
Monday 2006.09.18 16:15-16:30
EPSC 2006, Berlin, Germany
Typical Ionospheric Profiles

Earth (Hargreaves, 1992)
- F layer due to EUV photons
- E layer due to soft X-rays
- D layer due to hard X-rays
- Soft ~ 10 nm, hard ~ 1 nm

Mars (MGS RS data)
- Main peak at 150 km due to EUV photons
- Lower peak at 110 km due to X-rays. Lower peak is very variable and often absent
MGS electron density profiles from 15 and 26 April 2001

One profile on each day shows enhanced electron densities at low altitudes (red)

Percentage difference between the enhanced profile and the average non-enhanced profile

No difference above 120 km
100% difference at 100 km, so densities have doubled

Difference increases as altitude decreases
Solar flux at Earth measured by GOES satellites
Dashed line is 1 – 8 A, solid line is 0.5 – 3 A

Arrow marks the time of the enhanced profiles at Mars

15 April = X14.4 flare
26 April = M7.8 flare
Plots of NmE versus UT for Chilton, Millstone, Wallops, and Sondrestrom on 15 and 26 April

Shaded areas represent one standard deviation about the mean for April 2001

Dots are ionosonde measurements

Vertical dotted line marks time of solar flare

No data after X14.4 flare on 15 April

NmE increased after M7.8 flare on 26 April
Meteors at Mars

Typical altitude is 80 – 90 km
Same as models

Typical peak electron density is $1 - 2 \times 10^4$ m$^{-3}$
Same as models

Typical thickness is 10 – 20 km
Narrower than models predict
Suggests a large eddy diffusion coefficient
Seasonal Trends

One meteor layer every 200 profiles

Meteor layers are not randomly distributed in Ls

Concentrations at Ls~190 (Asteroid 2102 Tantalus?) and at Ls~210

<table>
<thead>
<tr>
<th>Year</th>
<th>meteor</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-99</td>
<td>0</td>
<td>295</td>
</tr>
<tr>
<td>00-01</td>
<td>1</td>
<td>1572</td>
</tr>
<tr>
<td>02-03</td>
<td>11</td>
<td>1882</td>
</tr>
<tr>
<td>04-05</td>
<td>16</td>
<td>1851</td>
</tr>
</tbody>
</table>
Meteor Layer Altitude

Meteor layer altitude from 2002-2003 data correlates with peak electron density.

No correlation for 2004-2005 data.

Conclusion

Something that controls meteor layer altitude varied during the observations.

Something that controls peak electron density also varied during the observations.
Meteor layer thickness from 2004-2005 data correlates on peak electron density.

No correlation for 2002-2003 data.

Implication:
We can examine the observational conditions carefully and determine what variable is controlling these changes in meteor layer altitude and thickness.
Conclusions

• Mars ionosphere is affected by solar flares
• Mars ionosphere is affected by meteors

• Data analysis and theoretical modelling can determine properties of solar flares and meteors. Can also determine properties of ionosphere that are involved in the ionospheric response to these aspects of space weather.