Morphology of meteoric plasma layers in the ionosphere of Mars as observed by the Mars Global **Surveyor Radio Science** Experiment Withers, Mendillo, Hinson and Cahoy

(withers@bu.edu)

EGU2008-A-02893 XY0608 Friday 2008.04.18 10.30 – 12.00 EGU Meeting 2008, Vienna, Austria

A Typical Mars Ionospheric Profile

Transport important above
~180 kmMGS Radio Scient
MGS Radio Scient
200Main peak at 140 km due to
EUV photons $\frac{200}{(\underline{y})^{180}}$ $\frac{200}{(\underline{y})^{180}}$ $\frac{200}{(\underline{y})^{180}}$ $\frac{200}{(\underline{y})^{180}}$ $\frac{200}{(\underline{y})^{180}}$

Lower peak at 110 km due to X-rays. Each X-ray that is absorbed produces multiple ion-electron pairs

"secondary ionization"

- CO₂ + hv -> CO₂⁺ + e
 (production)
- CO₂⁺ + O -> O₂⁺ + CO
 (chemistry)
- O₂⁺ + e -> O + O
 (loss)

Profile 0337M41A

Main peak is consistent with Chapman theory Lower layer is hard to model

Meteoric Plasma Layer

Layer at 90 km is not due to photoionization of CO_2 . Solar spectrum and CO_2 ionization cross-section will not lead to plasma layer.

Particle precipitation could, in theory, produce a layer like this – but no solar activity observed at this time

Theory

- Models have predicted plasma layers at 90 km due to meteoroid influx.
- A Pesnell and Grebowsky (2000)
- B Molina-Cuberos et al. (2003)

Additional Observations

71 meteoric plasma layers in 5600 MGS profiles

Characteristics of Meteoric Layers

L_m is not controlled by H (neutral scale height H found by fitting shape of main peak)

Summary of analysis

- N_m does not show any dependence on solar zenith angle
- z_m and N_m are positively correlated
- z_m and L_m are positively correlated
- L_m does not behave as anticipated
 - $-L_m$ is not correlated with H
 - Values of L_m range from <2 km to >20 km
 - Almost 30% of values of L_m are more than 1σ away from the mean; only 10% of values of H are more than 1σ away from the mean

Electron density depends on solar zenith angle at 130 km and 110 km, but not at 90 km

Why no SZA control at 90 km?

- Expect Chapman-like SZA dependence if solar irradiance is constant because ionosphere controlled by photochemical processes (not transport) at 90 km
- Ions produced by photoionization from photons with λ < 5 nm soft X-rays
- Solar irradiance is so variable at these wavelengths that variability in irradiance overwhelms trends with SZA

Idealized Model

- Two components
 - Background ionosphere in absence of meteors, N decreases as altitude decreases
 - Meteoric effects, contributes a narrow layer of excess plasma whose altitude varies due to changes in meteoroid speed and neutral density levels
- Determine relationships between z_m , N_m , L_m and H for fixed N_{bgd} and variable altitude of meteoric layer
- Solar variability causes slope and magnitude of N_{bgd} to vary, which puts a lot of scatter in real data but does not destroy underlying trends
- Assume that changes in N_{bgd} due to SZA changes are overwhelmed by effects of solar variability

Idealized Model

- Background ionosphere $N_{bgd}(z)$ given by:
 - $-N_{bgd}$ varies linearly with z
 - $-N_{bgd} = 0$ at z=80 km, $N_{bgd} = 4E4$ at 110 km
- Meteoric contribution N_{met}(z) given by:

$$-N_{met}(z) = N_0 \exp(-x^2/2s^2)$$

 $-x = z - z_0$, s = 2 km, z_0 varies

• Total electron density $N = N_{bgd} + N_{met}$

Vary z_0 only, observe that N_m increases and L_m increases as z_m increases

 $L_{\rm m}$ increases as $z_{\rm m}$ increases, as observed

Challenges for Theorists

- What typical values of z_m, N_m and L_m are predicted?
- What processes control z_m , N_m and L_m ?
- Can sophisticated models of the ionospheric effects of meteoroids explain these observations?
- What are the main production and loss
 processes for meteoric ions?
- What is the lifetime of a meteoric ion?
- Do transport processes affect meteoric ion densities?

Conclusions from Observations

- Many meteoric layers are observed in MGS ionospheric profiles
 - $-z_{\rm m} = 91$ km (5 km std. dev.)
 - $-N_{m,}=$ 1.3E4 cm⁻³ (0.3E4 cm⁻³ std. dev.)
 - $-L_{m} = 10 \text{ km} (5 \text{ km std. dev.})$
- L_m and N_m increase as z_m increases
- None of z_m, N_m and L_m depend on SZA, which is consistent with high solar variability at the relevant wavelengths

Conclusions from Model

- Observations are qualitatively consistent with a very simple model
- Model requires SZA effects to be overwhelmed by solar variability
- Meteoric layer characteristics in model vary due only to altitude of meteor ablation varying
 - Speed of incident meteors vary
 - Altitude of critical pressure level varies
- Model inputs could be refined and tuned to quantitatively reproduce observations

Predictions

- z_m will vary with season and latitude due to dependence of meteoric layer on altitude of ablation
- L_m will depend very little on H
- Consideration of solar variability will be essential for interpreting observations and for comparing observations to model
- Development of models that can reproduce the typical observations <u>and</u> variability will be challenging