Less studied than Earth, yet more studied than any other planet, Mars
is our solar system's best laboratory for testing generalizations of the
earth, atmospheric and related sciences beyond Earth. | shall illustrate
this using examples from recent studies of its atmosphere and
lonosphere.

For the atmosphere, a rich spectrum of tides and waves dominates its
dynamics. Changes in the dominant oscillations reveal the influence of
the atmosphere's thermal structure and circulation.

For the ionosphere, its basic chemistry is simple enough that
ionospheric observations can be valuable diagnostics of atmospheric
and solar properties. Yet Mars's incredibly variable and non-Earth-like
magnetic environment leads to complex magnetosphere-ionosphere
interactions and ionospheric electrodynamics, where the few currently
available observations hint that many remarkable phenomena remain
to be discovered.

| shall conclude by outlining directions for extending these atmospheric
and ionospheric studies to other bodies in the solar system and
beyond, including potential instrumentation projects.
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Atmospheres and lonospheres

An ionosphere is a weakly ionized plasma embedded within an
upper atmosphere, often produced by photoionization

Principal themes are:

— Chemistry (conservation of
mass)

— Energetics (conservation of
energy)

— Dynamics (conservation of
momentum)

— Coupling to below (deep
interior, solid surface, liquid
surface, lower atmosphere)

— Coupling to above
(magnetosphere and solar
wind)

These are planetary science

topics that can be studied

by “physics without history”

— Unlike geophysics,

geochemistry, solar system
evolution

“Same processes in

different places” lead to

wide variety of outcomes
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Approaches to planetary science

. Richard Scarrys planetary

What D(f) scientists

Instrumentation
Telescopic observations
« Data analysis

« Laboratory studies

* Fieldwork

 Theory

« | focus on data analysis,
supported by theoretical work

« | plan to build upon history of
involvement with spacecraft
instrument teams

o Ml A RANDOM HOUSE BooK
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Why Data”? Why Mars”?

*  Why rob banks? Discoveries come from data

» Because that's where the — Going where the most
money is rewarding challenges are is
— Willie Sutton (1901-1980) common in planetary science
— Not simply following $,
; jumping on bandwagon, or
inertia of existing projects
« Mars and Saturn are currently
data-rich

« Mars is well-suited to
comparative studies with
Venus and Earth

* Much of my past research has
extended beyond Mars and so
will my future research

Wikipedia

reamble| Atmosphere lonosphere Future 7127
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What dynamical behaviours occur
in a spherical shell of rotating fluid?
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The atmosphere of Mars

* Predominantly CO,, with O
important at high altitudes

* 6 mbar surface pressure

» Atmosphere freezes on winter
pole

» Airborne dust affects heating,
winds

* Rich spectrum of tides and
waves is important for
atmospheric dynamics

Preamble lonosphere Future 9/27




Atmospheric oscillations
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Thermal tides are global-scale disturbances
Acos (nQt + s\ — @) with periods related to the martian day

Acos (nQtpr + (s —n) A = ¢) Sun-synchronous tides have s=n

Non-Sun-synchronous tides do not have s=n
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Effects of the surface extend high
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Pressure (Pa)

Mlddle atmosphere tldes
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SPICAM pressures at 15-45N, autumn, Amplitudes and phases of major
and LST=1-4 hours components for both pressure

and temperature can be found
Very similar structures to those seen at

130 km by aerobraking accelerometers Variations in these properties can
be used to constrain underlying

AS major Robert Pratt is studying tides tidal modes, background winds

in this dataset and AS major Jeff Russo and dissipation mechanisms

IS comparing data to predictions
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What are terrestrial planet ionospheres
like and how do they work?
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The ionosphere of Mars
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Withers et al. (2009) Decadal Survey white paper
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Magnetlc fleld at Mars

300
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Latitude (°N)
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Based on
model of -0} S
Arkani-Hamed

(2004)  -90[.
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Longitude (°E) |B| (nT) at 150 km
Magnetic field strength Strong or weak by comparison to other effects?

Magnetic field direction  Vertical, horizontal, or inclined?
Magnetic field topology = Solar wind field line, open crustal field line,

closed crustal field line?
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Why does B matter?

Weak field is easy, plasma moves vertically
— Ambipolar diffusion

— (m; +me) g 2t O0In N
L=
(mi —I_me)g 82

Vambi,weak —

mMiVin + MelVen
Strong field is easy, plasma moves along fieldlines

& 9
Uambi,strong — Vambi,weak X sin” [

What happens in intermediate case?

What happens in 3-D ionosphere with gradients in field strength and
field direction?

Velocity affects plasma densities, currents, electric field, induced
magnetic field (which on Mars can be comparable to crustal field)
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Electrodynamics for general B
Withers (2008)

1 /
0=mjg — =V (N;kTj) + q;£ + ¢; BA w; — m;vjaw;
7
Gravity Electric field lon-neutral collisions
Pressure gradient Magnetic field

J = Z quj% Definition of current density, J
J

/
Algebra leads to: l Q T ii Key ratio is: Kj = J
(generalized Ohm'’s law) myv.,

Next, use conservation of charge, Maxwell's equations, and assumed boundary
conditions to obtain expression for ion velocity that:

Reduces to the strong field limit for ambipolar diffusion if B strong

Reduces to the weak field limit for ambipolar diffusion if B weak

Provides smooth transition between weak and strong regimes with currents
(dynamo region)

Preamble Atmosphere|lonosphere|Future 21/27




Extending 1D model in unusual
1000 ke magnetic environment
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AS grad student Majd Matta

is working to simulate 2D
plasma motion under martian
conditions — code is currently
being tested and debugged
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Field strength and direction vary
tremendously on short spatial scales
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Future research

« Atmospheres * Quter solar system
— Long-term atmospheric — Titan/Venus neutral
oscillations at Venus atmosphere comparisons
— Thermal tides in extensive — Cassini drag data at Titan
Mars Climate Sounder and Saturn
dataset — Atmospheric oscillations in
 lonospheres Huygens entry profile
— Explore topside radar * Beyond our solar system
sounder data from Mars — Explore range of possible
— Comparison of Venus and lonospheres by adapting
Mars (summer project for existing models
incoming student Zachary
Girazian)
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Instrumentation
e

Rocket
payloads

Ground-based astrophysical and
aeronomical instrumentation

Spaceflight instrumentation for
heliophysics missions

involvement in spaceflight
instrument teams for
planetary missions

RAPID Crater
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Experience and Opportunities

« Aerobraking accelerometers

— Many grazing profiles of atmospheric
density

 Radio occultations

— Many profiles of ionospheric electron
density and neutral pressure/temperature

— Co-l on pending instrument proposal for
2016 Mars orbiter (TGO)

/__,@ Atmospheric Sounding
_ . Antenna Through Radio

'mﬁ:* - on Earth
' Occultations (ASTRO)

TGO

ASTRO’s experienced team will explore the atmosphere of Mars using
the well-established radio occultation (RO) technique, exploiting the
unique observing geometry provided by an orbit that drifts in local time.
With its extensive heritage, ASTRO can address central science
objectives of the TGO mission.

Preamble Atmosphere lonospher

Entry accelerometers

All

Single vertical profile of
atmospheric density,
pressure and temperature

Smart strategy is to
leverage this focused
involvement into
collaborations with related
instruments

Past and current
!nvolvement as Co-l and
in other roles

Hard_ware IS es_sential for
mission operations

Established groups have
recently disintegrated via
retirements
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Potential collaborations at BU

N
New Horizons

Radio Science

Experiment
Atmospheres —

Clarke, Mendillo,
Earth Sciences
and other BU
departments

Instrumentation —
Chakrabarti, Clemens,
Clarke, Fritz, Janes, ECE

lonospheres —
Oppenheim,
Mendillo,

Semeter, ECE - G
o A NASA.
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What | want you to remember

 How | select research topics
— Go where the big opportunities are
— Apply “physics without history”
— Complementary use of data and models

 What I've done in my recent research
— Tides and thermal structure of atmosphere of Mars
— Variations in the ionosphere of Mars
— Related work beyond Mars

 Where | want to lead a research group
— Atmospheres and ionospheres beyond Mars
— Instrumentation opportunities
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