The top of the martian atmosphere

Paul Withers Center for Space Physics Boston University (withers@bu.edu)

Friday 2007.02.02 University College London

Acknowledgements

- Michael Mendillo, Boston University
- Dave Hinson, Stanford University
- Henry Rishbeth, University of Southampton
- Steve Bougher, University of Michigan

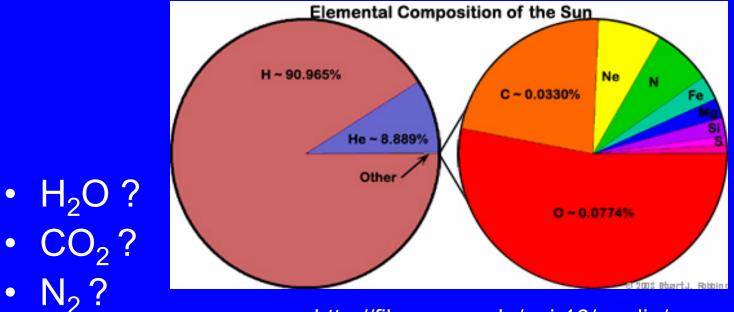
Images

- www.solarviews.com
- The Cosmic Perspective, Bennett et al.

Aim: Describe the current state of the Mars upper atmosphere and its important processes

- Motivation: Atmospheric loss on Venus, Earth, and Mars
- Context: Present-day Venus, Earth, and Mars
- Details: Chemistry, dynamics, energetics, and plasma in the Mars upper atmosphere

Venus, Earth, and Mars – Some Similarities


- Rock/metal surfaces and interiors
- Similar bulk compositions, so probably similar primordial atmospheres
- Substantial atmospheres today
- Similar sizes and gravities

Venus, Earth, and Mars – Some Differences

- Distance from Sun: Mars > Earth > Venus, so expect Venus to be hot and Mars cold
- Magnetic field: Earth has strong dipole field, Venus has no field, Mars has regions of strong field and regions of no field
- Size: Mars is smaller than Earth and Venus, so its gravity is weaker

What gases should be common in terrestrial planet atmospheres?

http://filer.case.edu/~sjr16/media/sun_elements.jpg

- Noble gases ? •
- $O_{2}?$

ullet

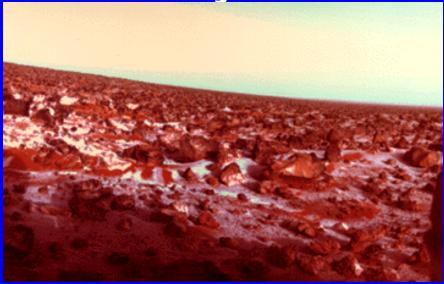
- Must be abundant in the inner solar system
- Must be volatile enough to be gaseous

Atmospheric Compositions

- Meteorites, Sun, giant planets suggest that H₂O, CO₂, N₂ should be most abundant
- Venus: 100 bar pressure

 Mostly CO₂, some N₂
- Earth: 1 bar pressure
 No and O mixture
 - $-N_2$ and O_2 mixture
- Mars: 0.006 bar pressure – Mostly CO₂, some N₂

Atmospheric History

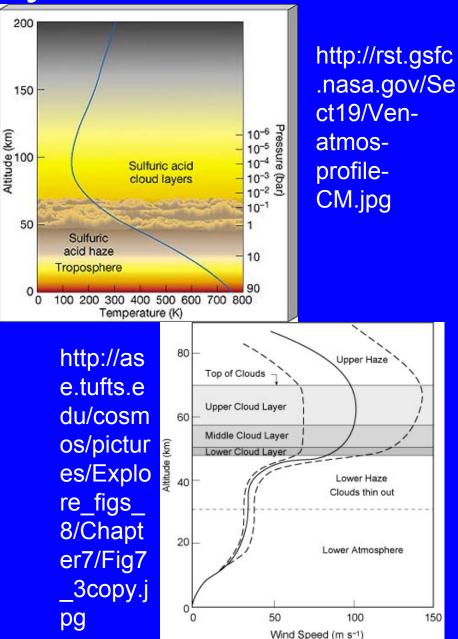


 http://www.beachyhead.org.uk/_images/_images/_new/7sisters.jpg http://www.aerofun.ch/image_gallery2/image9.jpg
 Earth: H₂O forms oceans, cannot be dissociated by UV, so no H lost to space. CO₂ dissolves in

oceans, forms carbonate rocks. Leaves N_2 dominant gas in atmosphere. Continuous biological activity pumps O_2 into atmosphere and chemical reactions consume O_2

Atmospheric History

http://www-curator.jsc.nasa.gov/antmet/marsmets/images/viking.gif

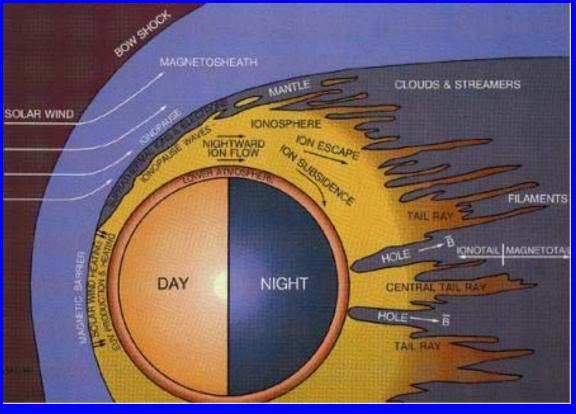

- Venus: Too Hot
 - H_2O in atmosphere photodissociates, H lost to space very rapidly. C, N, O lost more slowly, so CO_2 and N_2 remain in atmosphere
- Mars: Too cold
 - H₂O frozen solid. Low gravity and weak magnetic field mean that CO₂ and N₂ escape rapidly, reducing atmospheric thickness. Some frozen H₂O sublimates into thin atmosphere, is photodissociated and H is lost to space.
- The masses and chemical compositions are explained! But this "story" needs rigorous testing.

Escape Questions

- How did Mars lose 99.9% of primordial atmosphere, yet keep 0.1%?
- What is the history of Mars climate?
- How have magnetic fields affected escape?
- What are dominant escape processes today and how do they operate?
- What is upper atmosphere like today and what processes are important?

Present-Day Venus

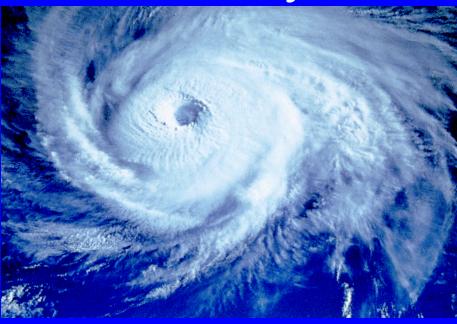
- Zero obliquity and eccentricity mean no seasons
- Thick atmosphere, slow rotation mean that weather at surface is same everywhere
- 740 K at surface, slow winds, no storms, no rain
- H₂SO₄ clouds at 50 km, where pressures and temperatures are similar to Earth's surface



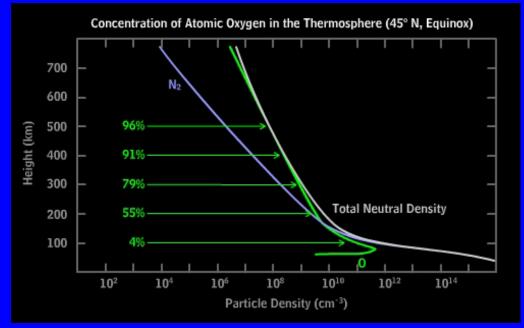
Venus upper atmosphere

- Reformation of photolysed CO₂ catalysed by CI, terrestrial implications
- Lots of solar heating, but little day-night transport of energy
- Nightside upper atmosphere is very cold, 100 K, whereas dayside is 300 K
- O / CO₂ ratio plays a major role, more O than CO₂ above 150 km
- Only H is escaping today

Venus ionosphere and plasma


- lonosphere formed by EUV photoionization of CO₂, but CO₂⁺ + O -> O₂⁺ + CO
- O₂⁺ is dominant at Chapman peak (140 km), O⁺ dominant 40 km higher up

http://www3.imperial.ac.uk/spat/research/space_magnetometer_laboratory/spacemissionpages/venusexpresshomepage/science


- Transport important near O₂⁺/O⁺ transition and above
- Magnetic fields due to draping of solar wind around planet
- Nightside ionosphere and magnetic fields are complex and variable, affected by plasma transport across terminator

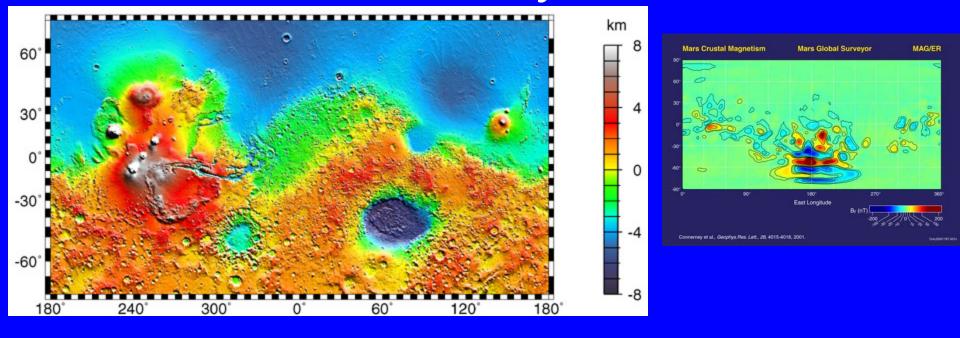
Present-Day Earth

- Coupled atmosphere and ocean
- Strong seasonal and latitudinal variations, but significant transport of heat from dayside to nightside and equator to poles
- Rapid rotation and ocean/land contrasts drive lots of weather
- Stable global circulation patterns (Hadley cells)

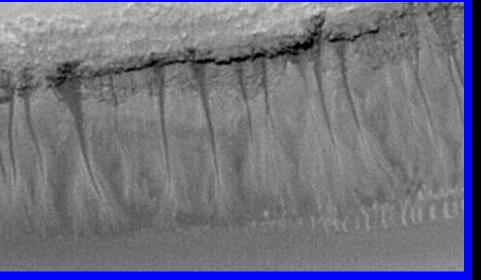
Earth Upper Atmosphere

http://www.meted.ucar.ed u/hao/aurora/images/o_c oncentration.jpg

- O is more abundant than O₂ above 100 km and more abundant than N₂ above 200 km
- T > 800 K above 200 km, much hotter than Venus or Mars. These atmospheres are cooler because CO₂ is very effective at radiating heat, whereas Earth needs higher temperature gradients to conduct heat downwards
- Heating at poles due to magnetic fields guiding solar wind
- Only H is escaping today


Earth lonosphere

http://www.bu.edu/cism /CISM_Thrusts/ITM.jpg


- O₂⁺ and NO⁺ dominant at 100 km, where EUV absorption peaks
- O⁺ dominant at 300 km (overall peak), where transport plays major role
- Changes from O₂⁺/NO⁺ to O⁺ and from N₂ to O make things complex
- Magnetic fields affect plasma transport, especially at equator and near poles

Present-Day Mars

- Minimal wind erosion
- Possible weak ongoing volcanism and tectonism, no evidence for past plate tectonics
- Frozen H₂O at poles and elsewhere
- Frozen CO₂ at poles
- Large canyons, craters, volcanoes

Present-Day Mars

- 1/3 of atmosphere freezes onto winter polar cap
- Global dust storms
- Large day/night temperature differences
- Surface pressure too low for liquid water to be stable, but ongoing gully formation may require liquid water
- Saturated with H₂O, both H₂O and CO₂ clouds are common

Lower, Middle, Upper

- Lower: 0 40 km, exchanges heat with surface and/or suspended dust
- Middle: 40 100 km
- Upper: 100 ?? km, heated by variable solar UV flux, temperature increases with increasing altitude

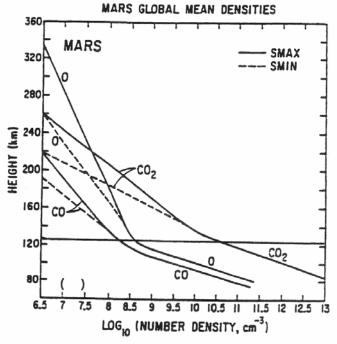
- Contains homopause, ionosphere, exobase

Unlike Earth, regions are not well-defined

The rest of the talk

- Describe upper atmospheric chemistry, dynamics, energetics, and ionosphere
 Using one illustrative example for each
- Link these examples by how they might affect escape

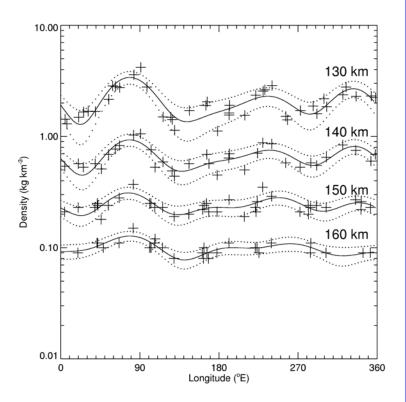
Chemistry: O and CO₂

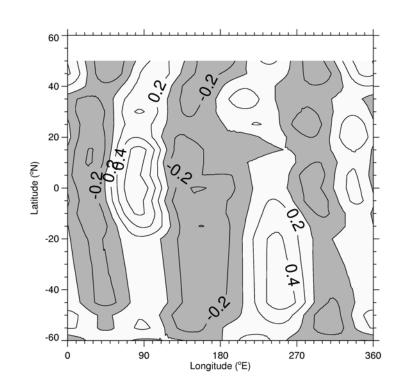

- CO₂ is photolysed by UV into CO and O
 This is a rapid process
- CO₂ + hv -> CO + O (λ < 1671 A)
- $O + O + CO_2 -> O_2 + CO_2$
- Why is the atmosphere made of CO₂, not
 2 parts CO and 1 part O₂?

Mars surface is very oxidizing

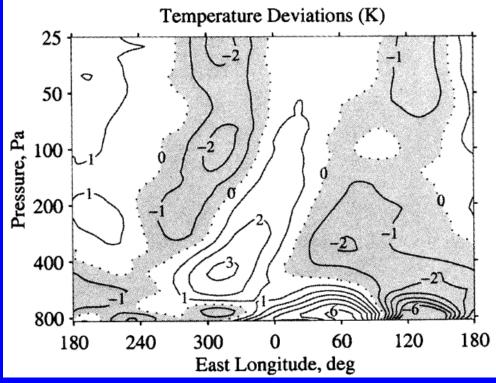
 Species like H, OH, HO₂, and H₂O₂ are relatively abundant and act as catalysts

- CO + OH -> CO₂ + H
- More chemistry oxidizes H back into OH
- Net effect is CO + O -> CO₂
- But not all O is lost...


O in the upper atmosphere



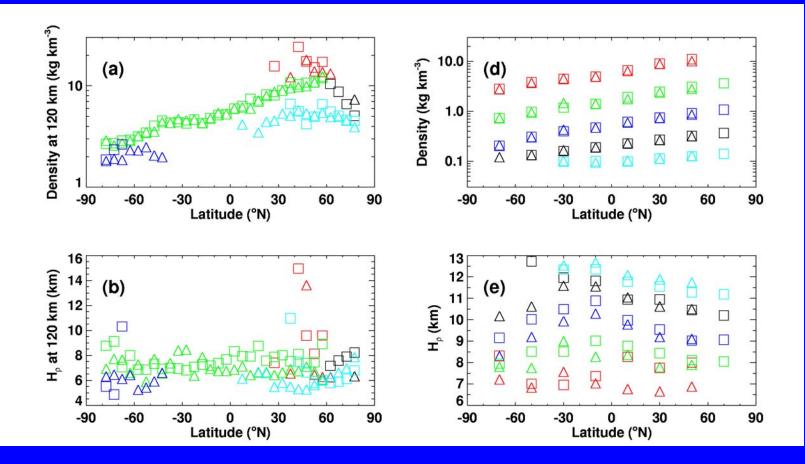
Bougher et al., 2002


- O / CO₂ > 1 above 200 km
- O bumps into CO₂, excites vibrational states (demo)
- CO₂ emits 15 um photon, deexcites
- Important for cooling upper atmosphere
- EUV photons absorbed by CO₂, form CO₂⁺ ions
- But $CO_2^+ + O -> O_2^+ + CO$
- O makes O₂⁺ the dominant ion
- Presence of neutral O makes it easy for O to escape, affects temperature of upper atmosphere, and controls composition of the ionosphere

Dynamics - Tides

Source of tides

Hinson et al., 2001


Some modes dissipate as they propagate up Some modes amplify as they propagate up Different modes dominant in lower and upper atmosphere

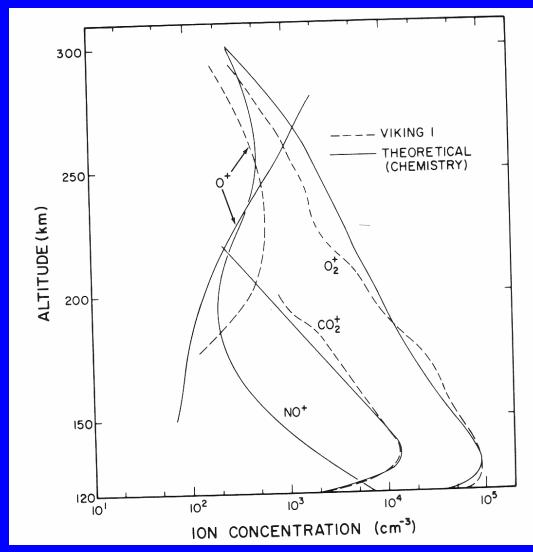
- Must be surface or interior
 - Nothing above surface varies with longitude
- Interaction of migrating tides with topography
- Dynamics of lower and upper atmospheres are linked together

Implications of tides

- Strong dynamics in upper atmosphere
- Circulation patterns will cause heating/cooling
- Breaking of waves and tides deposits energy and momentum into atmosphere
- Winds may transport plasma to regions where escape is easier

Energy – Temperature Variations

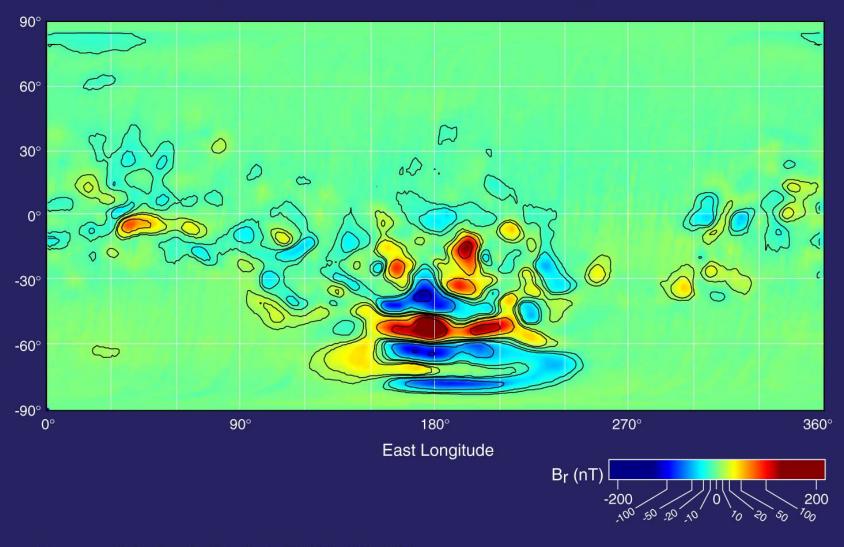
Panels a and b: Colours indicate different areobraking seasons/LSTs NP: Black = dayside, Light Blue = nightside SP: Green = dayside, Dark Blue = nightside


Panels d and e: Colours indicate 120 – 160 km in 10 km intervals

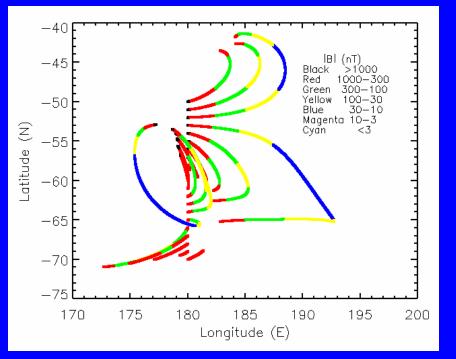
Temperature Observations

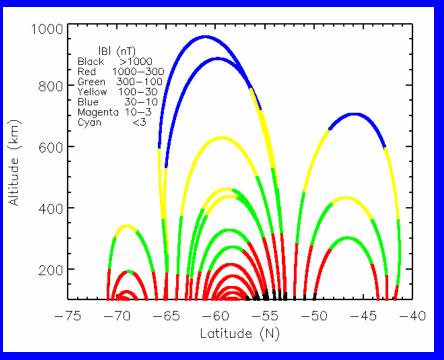
- Vertical temperature gradients much greater than meridional gradients
 - Atmospheric circulation transports heat poleward efficiently
 - Vertical gradients needed to conduct heat downwards into denser atmosphere where CO₂ 15 um radiation can radiate heat to space
- Mars: night T = 100K, day T = 150K
- Venus: night T = 100K, day T = 300K
 - Circulation is effective at heating Mars nightside
 - If too cold, nightside would not experience much escape

Ionosphere – Magnetic Fields


- CO₂ + hv -> CO₂⁺ + e
- $CO_2^+ + O -> O_2^+ + CO$
- O₂⁺ + e -> O + O
- Photochemical Chapman layer below ~180 km
- Transport important
 above there
- X-rays form second, lower peak that's hard to model
- Not enough ion or neutral composition data

Mars Crustal Magnetism


Mars Global Surveyor


MAG/ER

Connerney et al., *Geophys.Res. Lett., 28,* 4015-4018, 2001.

ConJ2001187.001v

- This is not like Earth
- Field is not dipolar
- Field is not always strong
- Field geometry gives me a headache
- Plasma transport in Mars ionosphere is hard to model without magnetic fields
- How do magnetic fields
 affect transport?
- Next: I want to convince you that a problem exists. I do not offer a solution to the problem in this talk. Speculation.

Earth

- Below 100 km, ions and electrons collide with neutrals, not frozen to fieldlines
- Between 100 km and 160 km, electrons, but not ions, are frozen to fieldlines
 - Dynamo region, horizontal currents flow, but transport of plasma has no effect on electron densities
- Above 160 km, ions and electrons are frozen to fieldlines
 - When transport dominates photochemistry (>200 km?), ions and electrons move together along fieldlines
 - Ambipolar diffusion, no currents

Earth

- Two different theories for charged particle motion
 - Currents allowed, but gravity and pressure gradients neglected. Plasma transport does not change electron densities. Dynamo theory, sometimes with empirical electric field model
 - No currents allowed, plasma transport does affect electron densities. Ambipolar diffusion along fieldlines
- Works due to separation of regions
- Will fail on Mars

Conclusions

- Mars atmosphere is an integrated system. Lower and upper regions are not isolated.
- Chemistry (O / CO₂) affects energetics (CO₂ cooling), dynamics (winds) affect ionosphere (ion-drag), etc.
- Comparisons to Venus and Earth are helpful, but not always right.
- Effects of magnetic fields on ion/electron motion are an interesting problem.