Space physics of the ionosphere of Mars

This hazy region contains the atmosphere and ionosphere of Mars

Paul Withers
Boston University
(withers@bu.edu)

Kerri Cahoy’s space physics course, MIT
Room 54-1623

Tuesday 2013.05.14
11:00 – 12:30
This is Mars

0.5 x R-Earth

1.5 AU from Sun

Same rotation rate as Earth

Carbon dioxide atmosphere

100x smaller surface pressure

Target of many spacecraft in last 15 years

www.solarviews.com
What is an ionosphere?
What is an ionosphere?

An ionosphere is a weakly ionized plasma embedded within an upper atmosphere, often produced by photoionization.
What does that actually mean?

<table>
<thead>
<tr>
<th></th>
<th>Atmosphere</th>
<th>Ionosphere</th>
<th>Space physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Gravity</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Sunlight</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Magnetic fields</td>
<td>✗</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>Composition</td>
<td>Neutrals</td>
<td>Ions, electrons, and neutrals</td>
<td>Protons and electrons</td>
</tr>
</tbody>
</table>
Neutral atmosphere is mainly CO₂, O becomes significant at high altitudes

O₂⁺ is main ion (?) at all altitudes

EUV photons responsible for main M2 layer

Soft X-ray photons and secondary ionization responsible for lower M1 layer

Transport only important in topside ionosphere

Withers et al. (2009) Decadal Survey white paper
Outline for this talk

• Measurement techniques at Mars

• Introduce some “Sun-planet connections” at Mars

• Consequences of bizarre magnetic field

• Opportunities for discussion
Radio occultation technique

MGS

MARS

Antenna on Earth
Radio occultation results

Withers et al. (2009)
MARSIS radar sounding

Gurnett et al. (2008)
MARSIS results

Gurnett et al. (2008)
Complementary techniques

Radio occultation
- Precise vertical scale
- 1 km vertical resolution
- Full vertical coverage
- ~200 km horizontal averaging
- Alias horizontal structure to vertical
- Limited opportunities

Radar sounding
- Derived vertical profiles affected by noisy ionograms and coarse time resolution
- Topside only, monotonic increase
- No horizontal averaging
- Many opportunities, no geometric limitations
Solar zenith angle and Nmax

Hantsch and Bauer (1990) – Radio occultation observations
Solar zenith angle and Nmax

\[n_0 = 1.58 \times 10^5 \text{ cm}^{-3} \pm 0.01\% \]

Morgan et al. (2008) – Radar sounder observations
The solar cycle matters

Hantsch and Bauer (1990)

N_{max} proportional to $F_{10.7}^{0.36}$

Why 0.36?
F10.7 is not solar flux

Fe = Energy m$^{-2}$ s$^{-1}$ from 0 to 90 nm from TIMED SEE

$k = 0.47 \pm 0.02$, much larger than past values
(also rather close to $k=0.5$)

Girazian and Withers (2013)
Solar rotation also matters

Nielsen et al. (2008)
Solar flares

SOLAR FLARE PHOTOGRAPHED AT BOYDEN OBSERVATORY
ON THE 11TH AUGUST 1972, AT 14h44m SAST

The accompanying photograph, taken by Mr. H. Bacik and Mr. J.P. W. has been sent to us by Prof. A.H. Jarrett, Director of the Boyden Observ.

http://www.assabfn.co.za/pictures/solar_boydenflare_historical_articles.jpg

Solar flares have impacts...

- Seven minutes of data
- 15 September 2005
- X1.1 class solar flare
- SZA=30°-40°
- 50% increase in Nmax

Nielsen et al. (2008)
X1.1 flare on 15 September 2005
GOES X-ray fluxes surge at time of MARSIS observations
Nielsen et al. (2008)
...over a range of altitudes

Mendillo et al. (2006) Soon after an X14 solar flare
Let's look at that lower peak

Fallows et al. (2013, under review) seems a lot like the main peak.
More solar rotation effects

Fallows et al. (2013, under review)
Nice agreement – and a bonus

Fallows et al. (2013, under review) How many ions/electrons per photon?
Anti-flares?

Withers (2009)
Upwards to the topside

Consistent with no transport

Withers et al. (2012)
What controls change in topside morphology?

Consistent with diffusive equilibrium

Withers et al. (2012)
Where’s the ionopause?

Sometimes very low CME?

Withers et al. (2012)
Where’s the ionopause?

Sometimes very high
Strong crustal field

Withers et al. (2012)
Mars is magnetically crazy

Earth magnetic field

Mars magnetic field

www.windows2universe.org

Brain (2002)
Magnetic field at Mars

Based on model of Arkani-Hamed (2004)
What is the ionosphere like in strongly-magnetized regions?

Oblique echoes seen over strong and vertical crustal magnetic fields

Gurnett et al. (2008) (both figs)
Ionosphere is “inflated”
Enhancements are localized

Peak electron densities

Enhancements seen over strong and vertical crustal magnetic fields

Nielsen et al. (2007)
Radio occultation view differs

Orbit 7344 2009-09-23T23:27:00.516

MEX RS electron density profile from orbit 7344 on 23 September 2009 at solar zenith angle of 52 degrees, latitude 34°S, longitude 137°E.

Withers et al. (2012)
Exploring the ionosphere of Mars

- MARSIS and radio occultations are highly complementary for exploring ionospheric spatial and temporal structure
- Key questions are the effects of the Sun and magnetic fields
- MAVEN mission (2013) will reveal chemistry, dynamics, and energetics
Figure 2A: Electron density profile from orbit 4258 on 30 April 2007 at solar zenith angle of 68 degrees, latitude 46°N, longitude 278°E.
Figure 2B: Electron density profile from orbit 2416 on 30 November 2005 at solar zenith angle of 79 degrees, latitude 67°N, longitude 42°E.
Figure 2C: Electron density profile from orbit 2541 on 4 January 2006 at solar zenith angle of 66 degrees, latitude 60°N, longitude 17°E.
Figure 2D: Electron density profile from orbit 2435 on 5 December 2005 at solar zenith angle of 78 degrees, latitude 67°N, longitude 333°E.
Figure 2E: Electron density profile from orbit 2840 on 28 March 2006 at solar zenith angle of 55 degrees, latitude 15°N, longitude 217°E.
Figure 2F: Electron density profile from orbit 7344 on 23 September 2009 at solar zenith angle of 52 degrees, latitude 34°S, longitude 137°E.