Meteor layers in the martian and venusian ionospheres: Their connection to meteor showers

Paul Withers (Boston University), Martin Patzold (University of Cologne) and Apostlos Christou (Armagh Observatory)

Europlanet N3 Fourth strategic workshop on meteor studies 2008.09.27, Cologne, Germany

Terrestrial context

- Models predict that meteor showers should double metallic ion densities and major storms should increase densities by an order of magnitude
- BUT analyses of current observations have been <u>inconclusive</u> on whether meteor showers affect terrestrial meteoric layers
- Normal variations in densities are very large, which makes it difficult to observe increases and attribute them to specific causes

Fig. 3. Measurements of Mg^+ concentrations from 32 sounding rocket flights. Events during meteor showers (open circles) are distinguished from the non-shower observations (solid dots).

Mg⁺ data from 32 flights. No obvious difference between showers and normal. From Grebowksy et al. (1998).

Fig. 5. Comparison of shower and non-shower total metallic ion concentrations in a mid-latitude zone (latitudes with absolute values between 30 and 55°). The shower data are shown as curves and non-shower data as points. Metallic ions from 18 flights. Peak densities during showers seem larger than normal.

Results inconclusive due to large variations. From Grebowsky et al. (1998).

Mars – Datasets

- 5600 electron density profiles from Mars Global Surveyor (MGS), 71 (1.3%) with meteoric layers
- 465 profiles from Mars Express (MEX), 75 (16.1%) with meteoric layers
- Difference in occurrence rate probably due mostly to differences in instrument sensitivity

MGS profile with meteoric layer

MEX profile with meteoric layer

electron density (10¹⁰ el/m³)

3 4 5 67 100

10-1

2

Mars – Seasonal Variations

- Occurrence rate is not constant with time. It varies by one order of magnitude for MGS.
 - Observations have varying solar zenith angle and latitude. It is perhaps possible that these variations affect the apparent seasonal trends. Simplest explanation for observations is seasonal dependence.
- 110 < Ls < 180, 13/2923 (0.4%)
- 190 < Ls < 230, 30/802 (3.7%)

Occurrence rate for MGS profiles as function of season (Ls) and Mars Year (MY). Horizontal lines show data coverage. Occurrence rate varies with Ls, trends repeat from year to year.

Occurrence rate for MEX profiles as function of season (Ls) and Mars Year (MY). Horizontal lines show data coverage.

Abundant meteoric layers

- Ten consecutive MEX profiles from 14-19 December 2005 (Ls = 340-343) all contain the meteoric layer.
- [I want to show figures of all/some of these profiles, perhaps the same as Martin's 2006 DPS presentation.]

Competing seasonal hypotheses

- Seasonal variations in transport and loss processes
 - Controlled by atmospheric properties, such as changes in winds and associated plasma transport
 - Endogenic
 - Dominant on Earth
- Seasonal variations in meteoroid input
 - Controlled by meteoroid properties, such as gradual variations in sporadic meteoroids or sharp variations in shower meteoroids
 - Exogenic
 - Not dominant on Earth

Problems with hypotheses

- Atmospheric hypothesis
 - These processes, which are important on Earth, depend on strong magnetic field
 - Venus has no internal magnetic field, although solar wind can impose one on the ionosphere
 - Mars has patchy internal magnetic field, but very weak for all MGS profiles
- Meteor shower hypothesis
 - Not a major factor on Earth, so why should it be important on Venus and Mars?

Testing hypotheses

- Very few models of martian meteoric layers exist, none have studied variability
- We don't know how the atmosphere varies with season
 - Atmospheric hypothesis is untestable at present
- Find when Mars crosses cometary orbits, correlate with high occurrence rates

– Meteor shower hypothesis is testable

Table 5. Candidate parent bodies for meteor showers during the L_s intervals listed in Table 3. Δ is the distance between Mars and the orbit of the comet, Δ_{crit} is the minimum distance between Mars and the orbit of the comet, and $L_s = L_{s,crit}$ when $\Delta = \Delta_{crit}$. Orbital periods are taken from JPL Small Bodies Database (2007). Christou & Beurle (1999) is abbreviated as C99, Selsis et al. (2004) is abbreviated as S04, Ryabova (2007) is abbreviated as R07, and Table 4 of this paper is abbreviated as T4. Ryabova (2007) do not state Δ_{crit} for (3200) Phaethon, so its value was calculated as described in Section 8.2.

Observed L_s	Predicted L _{s,crit}	Name of Candidate	Description	Publication	Δ_{crit} (AU)	Period (yrs)	
15°-25°	15.2°	25D/Neujmin 2	Comet	T4	0.0303	5.43	
	19.3°	85P/Boethin	Comet	T4	0.0935	11.06	
	23.8°	148P/Anderson-LINEAR	Comet	T4	0.0954	7.05	
25°-35°		—	-				
50°-60°	s			-			
85°-95°	90.4°	45P/Honda-Mrkos-Pajdusakova	Comet	T4	0.0795	5.26	
175°–185°	176.1°	79P/du Toit-Hartley	Comet	T4	0.0318	5.28	
	176.4°	88P/Howell	Comet	T4	0.0220	5.50	
190°-200°	190.6°	(2102) Tantalus	Asteroid	C99	0.060	1.47	
	198.7°	107P/Wilson-Harrington	Comet	T4	0.0536	4.28	
205°-215°	211.7°	15P/Finlay	Comet	T4	0.0452	6.75	
	213.0°	37P/Forbes	Comet	T4	0.0820	6.35	
225°-235°	227.3°	D/Haneda-Campos (1978 R1)	Comet	T4	0.0456	5.97	
335°-345°	340.2°	C/1998 U5 (LINEAR)	Comet	S04	0.0019	1043	
	343.9°	144P/Kushida	Comet	T4	0.0237	7.57	
350°-360°	350°	(3200) Phaethon	Asteroid	R07	0.1114	1.43	
	352.1°	24P/Schaumasse	Comet	T4	0.0395	8.25	
	357.8°	38P/Stephan-Oterma	Comet	T4	0.0260	37.72	
	359.3°	15P/Finlay	Comet	T4	0.0386	6.75	

Note that the unique case of ten consecutive meteoric layers matches smallest Δ

Venus

- 118 profiles from Venus Express (VEX), but about half are nightside profiles
- 18 dayside profiles have meteoric layers (about 30%, twice as common as for MEX)
- If occurrence rate varies with season at fixed solar zenith angle, etc., then cause must be external to Venus as Venus has no seasons.

Excellent test

Two VEX profiles from same orbit

Ve	enus: met	teor layer occurences in the lower ionosphere observed by VEX VeRa						eRa	possible cometary originators				
year	DOY	I = Ingress	Date	latitude	SZA	n _{max}	h _{max}	range			impact latitude	SZA	Ref
		E=Egress		(deg)	(deg)	(10 ¹¹ m ⁻³)	(km)	(km)	(km)	comet name	(deg)	(deg)	
					81.3	0.13	121	111	124	141P/Machholz 2	45	58	CHR,NES,JEN
	202		24.07.2006	75.0						Southern Taurids	1	170	· ·
	202		21.07.2006	15.9						Northern Taurids/2004 TG10	+6/7	172	CHR
										C/1937 D1 (Wilk)	-47	128	BEE,NES
2006	204	I	23.07.2006	42.0	83.0	0.11	110	105	115	Southern Taurids	1	170	
				-42.0				100		Northern Taurids/2004 TG10	+6/7	172	CHR
	212	F	31.07.2006	0.68	88.0	0.08	123	118	127	12P/Pons-Brooks	62	99	BEE,CHR,NES,JEN
										27P/Crommelin	72	102	BEE, CHR, SEL, NES, JEN
	218	F	06.08.2006	88.6	91.0	0.04	115	110	119	12P/Pons-Brooks	62	99	BEE,CHR,NES,JEN
										122P/de Vico	-58	95	BEE,CHR,NES,JEN
	3		03.01.2007	-68.8	83.2	0.04	114	111	1.10	C/1964 L1 (Tomita-Gerber-Hond	-10	110	
									116	P/2007 12 (Kowalski)	-29	135	0110
										Northern Deita Aquarids	5	153	
	14	daubla	14.01.2007	80.8	84.5	0.19 0.22	114 110 114 110	100 105	122	alpha Capricomids	-2	100	CHR
	14		14.01.2007							C/1858 1 (Donati)	36	71	
		pear								alpha Capricornids		155	CHR
	14	E E	14.01.2007	-35.7	69.7	0.08			116	C/1858 L1 (Donati)	36	71	Criit
										alpha Capricornids	-2	155	CHR
	16		16.01.2007	79.6	83.9	0.11		105	120	C/1858 L1 (Donati)	36	71	<u>orn</u>
	4.0		40.04.0007		67.3		4.45	100	110	alpha Capricornids	-2	155	CHR
2007	16		16.01.2007	-29.3		U.11	115	109	119	C/1858 L1 (Donati)	36	71	
	18 I		19 01 2007	78.3	83.2	0.17	113	109		C/1858 L1 (Donati)	36	71	
									116	169P/NEAT	28	137	
			10.01.2007							alpha Capricornids	-2	155	CHR
										P/2004 X1 (LINEAR)	-23	99	
	24 double peak 26 E				80.4 59.6	0.29 0.37 0.17) 120 110 113	102		169P/NEAT	28	137	
		double	24.01.2007	73.3					122	35P/Herschel-Rigollet	-64	107	BEE,NES,JEN
		peak								Daytime Sextantids	-19	26	
				8.3					100	169P/NEAT	28	137	
									120	35P/Herschel-Rigoliet	-64	107	BEE,NES,JEN
	21	-	21.01.2007	26.2	64.0	0.22	107	102	124	Daytime Sextantius	-19	20	
	16/		13.06.2007	30.Z	91.5	0.23	107	102	1124	nono			
	166		15.06.2007	79.0	80.0	0.10	109	107	114	none			
	170	F	19.06.2007	75.6	76.4	0.07	113	107	119	none			
			10.00.2001	10.0		0.11				Southern Taurids	1	170	
	470	E	00.00.0007	70.4	70.4	0.12 0.14	116 106.5	112 104	120	1P/Halley	8	72	CHR,NES,JEN
	1/3		22.06.2007	/2.4	/3.1				111	Daytime Arietids	6	26	· ·
		peak								P/2006 U1 (LINEAR)	-20	157	
									121	1P/Halley	8	72	CHR,NES,JEN
	176	F	25.06.2007	68.5	68.9	0.19	112.5	109		Daytime Arietids	6	26	
	170						112.0	103		Southern Taurids	1	170	
										P/2006 U1 (LINEAR)	-20	157	
المراجع والمراجع	the Menue Er	Dedie Ce	innen Enneniment	1. V-D-									
STA = solar zenith angle at 120 km altitude: still illuminated by the Sun													
n _{max} = peak density at altitude h _{max}													
range = minimum and maximum altitude of meteor layer coverage													
BEE = Beech, M., Mon. Not. R. Astron. Soc. 294, 259 (1998)													
CHR = Christ	ou, A.A., Icaru	us, 168, 23 (200	4) A 0 A 41C 700 /0	00.4									
NES = Neslu	san, L. Contr	Astron, Ohs. S	, nove 410, 703 (2 ikal. Plesn 35, 16	3 (2005)									
JEN = Jennis	JEN = Jenniskens, P., Appendix Table 10a, Meteor Showers and their Parent Comets, CUP (Cambridge), 2006												

Future work

- More observations will be valuable, especially if they give range of Ls at fixed SZA.
- The lack of active numerical models of meteoric layers is a big problem.
- Need to move beyond orbit-orbit distance as sole predictor of meteor showers.
- Stronger connections between extra-terrestrial and terrestrial meteoric layer communities will be beneficial to both.

Conclusions

- Occurrence rate of martian meteoric layers is not constant. Probably a seasonal variation, although it is difficult to completely exclude aliasing from solar zenith angle and latitude.
- Endogenic hypothesis is untestable at present and it is hard to see how important terrestrial mechanisms work in the unmagnetized ionosphere of Mars. Narrowness of high occurrence rate intervals argues against atmospheric control.
- There are many Mars-crossing comets that could produce meteor showers, but no convincing explanation for why shower meteoroids are more important than sporadics.
- Venus studies are less mature, but promising.