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Summary of Personnel, Commitments, and Costs

Name Role Time Commitment Unbudened Salary
(fraction d awork year) (per year)

H.J Melosh Pl 0.05 $ 0
P. Withers  Co-l and SciencePl 0.5 $ 12000

Collaborators: W. B. Banerdt and G. A. Neumann
Commitments areidenticd for all years of the proposed research.
Professor Melosh’s time commitment, valued at approximately $4000 gr year, will

be suppated by his academic position at the University of Arizona. Thiswill reduce
the st to NASA of this grant propcsal.



Scientific/Tedhnicd/ Management Sedion

Objedives and Significance of Proposed Research

Basic objective - Continue our investigations of tedonic ridges in the northern plains
of Mars using MOLA data, theoretical models, and Viking and MOC images.

Expeded significance— The propased research will enhance our understanding of the
tedonic history of Mars, the origin of the northern plains, and the passhili ty of an
ancient northern ocean.

Reasons for propasing to this program — This propased research is very relevant to
NASA'’s planetary program in general and MDAP in particular. Owing to citizenship
restrictions, neither NASA nor NSF graduate student fell owships are open to Withers.
The requested fundng in this propacsal islargely to suppat Withers.

Task 1 —Map ridges in the northern plains, and their properties, using MOLA data.
Variationsin ridge properties will i ndicae variations in lithospheric structure or stress
regime.

Task 2 — Examine phaographic images of these ridges. Viking prints and MOC
images may reved fine-scde structure on these ridges, occurrences of which can be
correlated with ather ridge properties.

Task 3 —Study the relationship between these ridges and apopuation o subdued
craters, visiblein MOLA images of the northern plains and mapped as quasi-circular
depressons, or QCDs, by Frey and coll eagues, which isnot seen in Viking images.
Thiswill constrain the pre-Amazonian history of the northern plains, and the degraded
topaography of the craters will be used to estimate the extent to which the ridges have
undergone modification.

Frey’s derived data products will be made avail able to us for this proposed research.
Frey will nat provide any proprietary data. See “Accessto Frey’s QCD dataset”
sedion.

Task 4 — Calculate regional strain magnitudes and dredionsin the northern pains
using the results of Tasks 1, 2, and 3. Thiswill provide a onstraint ontedonic
models of the northern plains.

Task 5 —Modd stressand strain in the northern pains. Adjusting the model
parameters to best fit the results of Task 4 will constrain the nature of the lithaspheric
structure and loading in the vicinity of the northern pains.

With the exception o Frey’s derived data products, publicly available data will be
used to perform this propased research.



Impact of Proposed Reseach

Figure 1 shows a Viking phaomosaic of the northern part of the Utopiaimpad basin.
Craters are visible on amottled terrain. Figure 2 shows a digital terrain model
generated from gridded MOLA data avail able from the Planetary Data System (PDS)
(Smith et al. 1999. Many new features are visible, including a second, subdued,
popuation d craters and a network of ridges. The shallow slopes of the ridges and
subdued craters, and consequent lack of shadows, explain why they are not visible on
phaographic images. Improved global phaomosaics, e.g. from the MOC and
THEMIS instruments, they will suffer from the same handicapsin imaging these
shallow feaures. MOLA has no such limitations.

MOLA datareved that the northern plains of Mars are the flattest known surfacein
the solar system and that they are criss-crossed by ridges of likely tectonic origin
(Smith et al., 1998 Aharonson et al., 1998 Withers and Neumann, 2000, 2004, b;
Head et al., 2003, b, ¢). High-resolution shaded topographic images of the polar
basin, avail able & http://Itpwww.gsfc.nasa.gov/tharsissmola.html, show the ridges
clealy. A global digital terrain model at 1/32° resolution was made pulicly avail able
viathe PDSin March 2001.This, and any digital terrain models of improved
resolution made avail able during the duration d this propased research, will be the
primary dataset used.

The causes of the youth and smocothnessof the northern plains are still debated (Smith
et al., 1998,and references therein; Zuber et al., 2000. The network of ridgesisthe
dominant, indeal the only, tectonic feaure throughou this enigmatic region, which
covers a quarter of the planet. The most complete survey of martian ridges to date,
which mapped ower 16,000ridges, commented that “asiswell known, the northern
plains have few ridges’ and was nat able to identify the network of ridges revealed by
MOLA (Chicaro et al., 1985.

Wrinkle ridges, a subset of ridges, are one of the most commonly observed, yet least
understood, classes of planetary structure (e.g. Schultz, 200Q Watters, 1999. They
occur on al the terrestrial planets, including Mercury (e.g. Strom et al., 1975, Venus
(e.g. Kreslavsky and Basil evsky, 1998 Bilotti and Suppe, 1999, Earth (e.g. Plescia
and Golombek, 1986 Watters, 1989, the Moon(e.g. Lucchitta, 1976, 1977Sharpton
and Head, 198), and Mars (e.g. Plescia, 1991, 1993Watters and Robinson, 1997.
Observations of martian wrinkle ridges have been used to constrain the planetary
thermal history (e.g. Banerdt et al., 19929, tedonic history (e.g. Tanaka @ al., 1991%
Schultz and Tanaka, 1994, valcanic history (e.g. Watters, 1998B), impad history (e.g.
Wilhelms and Squyres, 1984 Chicarro et al., 1985, lithospheric structure (e.g. Zuber
and Aist, 1990, and changesin arbital and rotational dynamics (e.g. Melosh, 1989
Grimm and Solomon, 1986 Schultz and Lutz, 1989.

Thisresearch proposal will map and measure this network of ridges, then use that
information to constrain martian tectonic models and the history of the northern
plains. A preliminary test of the acient ocean hypothesis has been pubdished and
further tests of shoreline candidates are anatural part of Tasks 1 and 2 (Withers and
Neumann, 2008).



Preliminary Results

In ealier work, we began to investigate the distribution and reture of these ridges and
pubished atest of the axcient northern ocean hypaothesis (Withers and Neumann,
2000, 2004, b).

Task 1 —Ridge locaions have been mapped and we have begun to measure ridge
properties. Figure 3 shows ridges that we have mapped in the northern plains (black)
and also wrinkle ridges mapped globally by Watters (1993 using Viking images
(white). The ridges have charaderistic wrinkle ridge profil es, characteristic lengths of
100s of kilometers, charaderistic heights of 100 metres, and charaderistic flank
slopes onthe order of only 1 degree. Ridge spadngs vary throughou the northern
plains, bu are onthe order of 100 km.

Task 2 —Guided by Figure 2, several ridges can be seenin Figure 1. We have verified
that high-quality prints of Viking images of the ridges, available & the University of
Arizona s Regiona Planetary Image Fadlity, show detail beyondthat seenin the
more common representations of Viking images, such asthe USGS MDIM-2

avail able online, and have begunto study these.

Task 3 —We have not foundany examples of ridges clearly cutting fresh ar stedth
craters, suggesting that the ridges may predate both popuations of craters. However,
we have nat yet examined ather types of ridge-crater interadion, such as those
discussed by Sharption and Head (1988. Stedth craters, using the terminology
adoped by Head and Kreslavsky, are subdued craters that are easily visible in the
MOLA data. They are asubset of Frey’s QCDs.

Task 4 —Regional strain directions are readily apparent from Figure 3. Regional
strain magnitudes are harder to estimate. Using the techniques of Golombek et al.
(1991 we estimate aregional strain onLunae Planum, in the southern highlands, of a
few x 1073, consistent with Golombek et al. (2001), and about half that in nearby
Chryse Planitia, in the northern plains. This surprisingly large decrease over a
distance short by comparison with the scde of Tharsis, the source of the stress is
discussed in the Tedchnical Approach and Methoddogy section.

Task 5 —Figure 4 shows a prediction d compressve strain in the martian lithasphere,
performed by Banerdt. Also shown are ridges that we have mapped in the northern
plains (white) and wrinkle ridges mapped globally by Watters (1993 using Viking
images (red). Many of the ridges are orthogonal to the predicted dredion o
maximum compressve strain, as expeded for wrinkle ridges underlain by thrust
faulting. An obvious exceptionis the family of radial ridges within the Utopiaimpad
basin. These do nd have the devation df sets characteristic of wrinkle ridges
underlain by thrust faulting and may instead be shall ow compressonal features related
to theinfilli ng of Utopia (Turtle, personal communication, 200).



Tednicd Approach and Methoddoqy

Task 1 —Ridgeswill be mapped and their morphdogy studied using gridded MOLA
topographic data pulicly avail able from the PDS. Maps of absolute surfaces ope will
be generated. Ridges will stand ou aslinea regions of greaer than backgroundslope
and ke easily identifiable. Then, in the topographic data, these linea regionswill be
illuminated aaossstrike and can be nfirmed as ridges, rather than troughs or other
fedures. Then, topographic profiles will be constructed acrossthe ridges using
gridded MOLA topographic data, and the height, width, flank slopes, elevation df set,
and asymmetry of each ridge will be measured. Using gridded data to construct

profil es elimi nates the directional bias that would occur from using individua north-
south MOLA profil es to study these ridges.

These results will be used to seeif there ae any distinct classes of ridges within the
northern plains, or if all are morphdogicaly similar. Wrinkle ridges, a compressona
tedonic landform, are asubset of ridges. Ridges are dasdfied aswrinkle ridges onthe
basis of their morphdogy (Watters, 1988, 1993Schultz, 200(Q. Distinguishing
between tectonic and nontedonic ridgesis clealy important (seePreliminary Results
for Task 5). Ridge properties will be mmpared to those of previously studied wrinkle
ridge provinces on Mars and elsewhere in the Solar System.

The presence, or absence, of elevation dfsets acrosswrinkle ridges will | et usinfer
the presence, or absence, of underlying thrust faults and study the depth penetration d
these faults. Ridge spadngs are greaer than thase found onthe neighbouing known
wrinkle ridge provinces (Montes and Zuber, 2000, 2001Zuber and Aist, 1990,and
references therein). Montesi and Zuber use this observation to cdculate crustal
thicknessin the northern pains.

Task 2 —Using the high-quality prints of Viking images avail able & the University of
Arizona s Regiona Planetary Image Fadlity and MOC images avail able viathe PDS,
we will classfy ridge morphdogies as e in phdographic images. Schultz (2000
summarizes ome of the existing clasgfication schemes.

The detail visiblein these Viking printsis sgnificantly greder than the detail visible
in more common representations of Viking images, espedally phaomosaics. Due to
their shallow slopes, na all theridges are visible in even the best Viking prints, but
the Viking prints will provide anominal resolution several times better than that of
the gridded MOLA data. We will examine ridges first identified in MOLA data rather
than reproducing the mapping work of Chicarro et al. (1985 and Watters (1993. We
have nat identified fine-scde structure, such asthe “wrinkle” of wrinkle ridges, in the
km-scde resolution gridded MOLA data. Such detail might be visible in the Viking
prints or the ridges might lack fine-scde structure. If the latter istrue, then we can
draw conclusions abou the modification that the ridges have undergone sincetheir
formation.

MOC images, with typicd widths of akm, typical lengths of several tens of km, and
metre-scal e resolution may show much finer detail than MOLA is cgpable of
resolving. However, image cverageis garse and the ridges, many of which appear at
least partially buried, may not stand ou clearly in MOC images. Nonetheless a
careful survey iswarranted.



Task 3 —In their studies of QCDs on Mars, Frey and coll eagues have produced a
dataset of both fresh and subdwed craters (Frey et al. 2000, 2004, b). Figure 5,
prepared by Jim Roark, overlays these QCDs on a shaded relief map. QCDs are
identified by Frey and coll eagues using highly-stretched contoured MOLA data. They
are nat necessarily easily visible in the shaded reli ed representation d the data. Frey’s
QCD dataset will be made avail ableto usfor this propased reseach. See “Accessto
Frey’s QCD dataset” sedion.

We shall examine MOLA data and Viking images for evidence for crater deformation
by ridges, ridges deformed or obliterated by craters, control of ridge positionand
orientation by craters, and aher ridge-crater interadions. If a aater interseds apre-
existing ridge, then part of the ridge will be obliterated by the aater bowl and g ecta
blanket. If aridge intersects a pre-existing crater, then any componrent of strike-slip
faulting may cause lateral offsetsin the aater rim and any component of thrust
faulting may distort crater circularity or cause vertical off setsin the rim or introduce
lobate mounds of material into the interior of fresh craters (Sharpton and Head, 1988.
Ridges which appear to have orientations controll ed by craters, e.g. a set of ridges that
areradial to acrater, indicate that the aater predates the ridges. We will distinguish
between fresh craters and cratersin various dages of degradationin thiswork. This
will enable usto date the ridges relative to the various types of craters and henceplace
them in the martian stratigraphy.

We shall aso use the morphdogy of the QCDs, such as the relationship between their
depth-diameter ratios and those of fresh craters (Melosh, 1989 Garvin et al. 1998,
1999, 200) to constrain the anourt of deposition that has modified the ridges. This
will be useful for Task 4.

Task 4 — Strain directionsin the northern plains can be easily obtained from wrinkle
ridge orientations. Using the technique of Golombek et al. (1991), the topography of
an ummodified wrinkle ridge reveds the strain magnitude. However, as suggested by
the preliminary resultsfor Task 3, the gparent buria of the ridgesin the northern
plains causes this technique to underestimate the actual strain. Despite this limitation,
lower limits on strain magnitude will still be auseful constraint ontedonic models. If
Task 3 suggests that deposition hes been relatively uniform acrossthe northern pains,
then the ranking of measured strainsis likely to approximate the ranking of adual
strains. Thiswill be afurther useful constraint.

The results of thistask will be used to determine the orientations of the stressfield
resporsible for wrinkle ridge formation at the time of formation. Study of the
geometry of these geologicd structures hence places constraints on the dynamics of
the relevant lithospheric deformation mechanisms.

Forthcoming results of the research groups of J. W. Head (especially concerning the
deposition d the Vastitas Boredis Formation) and R. A. Schultz (espeadaly
concerning the modificaion d ridges, e.g. Wilkins et al., 2000 may improve our
knowledge of the depositional history of the northern plains to the point that
reasonabl e inferences can be made éou the pre-modification state of the ridges.



Task 5 — Gravity and topography provide the basic observables from which the
loading of the lithasphere aan be derived. However, given the nonrunique dharader of
potential field interpretation, undkrstanding the partiti oning between surface and
subsurface componrents of thisload (and thus the structure of the crust and upper
mantle) requires additional information. For example, aflexurally-supparted surface
load and an isostaticdly maintained edifice @uld exhibit the same topographic and
gravitational signature with the right distribution o density with depth. One dueto
this puzzle is the state of stress A flexural displacement will generate aquite diff erent
stressfield than an isostatic situation. Estimates of the strain magnitude and drection
at the surface (from which the stresscan be derived) can be used to provide
constraints for computer-generated lithasphere deformation models (Banerdt et al .,
1982 Banerdt, 1986 Banerdt et al., 1992

For this gudy we will use athin spherical shell deformation code (Banerdt, 1986
Golombek and Banerdt, 20() to investigate lithaspheric deformation onMars,
particularly aroundUtopia and rorthern Tharsis. Various lithaspheric structures will
be used (e.g., isostatic compensation at different depths, varying amourts of
compensation, etc.) and the stresses and strains generated from the present-day
topaography and gravity will be compared with the strains derived from our anaysis of
the plainsridges. Note that several lines of evidence suppat the assumption that
present-day topography and gavity arelittl e dhanged from the early Hesperian
(Banerdt and Golombek, 200Q Philli pset al., 200).



Relevance of Proposed Research

This proposed research will broaden scientific participationin the analysis of the Mars
Global Surveyor misson's dataset. It will enhancethe scientific return of the Mars
Global Surveyor missonin the foll owing ways:

A — Discovery and charaderization d an ursuspeded classof tedonic feaures onthe
northern plains, an enigmatic region d nea global scde, of Mars.

B — Uses these features to constrain global scde tedonic models, with spedal
emphasison Tharsis.

C — Tests the ancient northern ocean hypathesis.

D — Constrains the resurfacing history of the northern pains of Mars.

Enhancement C indirectly addresses the isaue of extra-terrestrial biology, an issue that
thoroughly permeaes NASA’s plans and aims.

All these enhancements satisfy the Science Goal of the Space Science Enterprise
Strategic Plan of “Understand the nature and history of our Solar System” and the two
Science Objectives of “ Characterize the history, current environment, and resources
of Mars, espedally the accessbility of water” and “ Investigate the processes that
underlie the diversity of solar system objeds’ (Office of Space Science, 1997.

The National Academy of Sciences’ Committeeon Lunar and Planetary Exploration
(COMPLEX) has advised NASA on NASA'’s plans (COMPLEX, 199). It stated a
primary objedive for understanding planetsto be: Spedfy the nature and sources of
stressthat are resporsible for the global tedonics of Mars. Enhancements A and B
addressthis objedive. It stated ancther primary objedive to be “ Advancesignificantly
our understanding of stratigraphic relationships for al solid planets.” Enhancement D
addresses thisobjedive.

COMPLEX aso posed severa key questions for understanding the surfaces and
interiors of solid bodes.

It asked: How do global- versus loca-scde processes contribute to the observed
tedonics? Enhancements A and B addressthis question.

It asked: How did the Tharsis and Elysium bulges on Mars form, and what do they
imply for the state of stressin the crust and the dynamics of the interiors of the planet?
Enhancement B addresses this question.

It asked: What are the erosiona and sedimentation hstories of Mars? Enhancements
C and D addressthis question.

It asked: To what extent have materias been redistributed acrosstheir surfaces?
Enhancements C and D addressthis question.



Outline of Plan of Work

First six months

Continue Task 1 Map ridges Withers, Neumann
Continue Task 2 Examine Viking and MOC images Withers
Continue Task 3 Study ridge-crater interactions Withers

Present results at a scientific meeting

Second six months

End Task 1 Map ridges Withers, Neumann
End Task 2 Examine Viking and MOC images Withers
Continue Task 3 Study ridge-crater interactions Withers

Present results at a scientific meeting
Submit paper covering results of Tasks 1 and 2 and latest results from Task 3

Third six months

Continue Task 3 Study ridge-crater interactions Withers
Continue Task 4 Estimate regional strains Withers, Neumann
Continue Task 5 Theoretically model tectonics Banerdt

Present results at a scientific meeting
Submit paper covering latest results from Tasks 3, 4, and 5

Fourth and final six months

End Task 3 Study ridge-crater interactions Withers
End Task 4 Estimate regiona strains Withers, Neumann
End Task 5 Theoretically model tectonics Banerdt

Present results at a scientific meeting
Submit paper on final results from this research proposal



Expeded Contributions

Melosh (Principal Investigator)

Professor Melosh has gudied panetary tectonics for many years. Heis an expert on
the modelli ng of tectonic problems and al aspeds of impact cratering (Melosh and
Radsky, 1980, 1981Melosh and Willi ams, 1989 Melosh, 1989.

. Resporsible for quality and drection d research, and for use of awarded funds
. Supervisory role for Withers

Withers (Co-Investigator and SciencePl)

Mr. Withers, a PhD candidate, initi ated this projed during a summer reseach
placenent at NASA’s Goddard SpaceFlight Center. He has presented initial results at
severa conferences and in the peer-reviewed literature (Withers and Neumann, 2000,
20013, b).

. Lead rolein proposal preparation
. Resporsible for day-to-day progressin most Tasks

Banerdt (Coll aborator)

Dr. Banerdt, a member of the MOLA Science Tean, wrote the standard referenceon
martian tedonics (Banerdt et al., 1992. He uses theoreticd tedonic modelsto
constrain lithaspheric structure and loading onthe terrestrial planets (Banerdt et al.,
1982 Banerdt, 1986 Banerdt et al., 19929.

. Use theoretical models to predict stressand strain for Task 5

Neumann (Coll aborator)

Dr. Neumann, amember of the MOLA Science Tean, leads the processng of raw
MOLA datainto ascientificdly useful product. He supervised the summer research
placement of Withers andisintimately familiar with the MOLA data.

. Continue to guide Withers through the use of large gridded data sets
. Asdst in automating the measurement of ridge properties for Tasks 1 and 4



Figure 1 - Viking Photomosaic
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Figure 2 - MOLA Data
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MOLA Shaded Relief
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Figure5 —QCDsoverlain on a shaded relief map
Figure prepared by Jim Roark



Accessto Frey's QCD dataset

Message-1d: <4.2.0.58.20010809084052. 00b9a5d0@op3. norton. anti vi rus>
X-Sender: frey/core2. gsfc. nasa. gov@op3. norton. antivirus
X-Mai | er: QUALCOWM W ndows Eudora Pro Version 4.2.0.58
Date: Thu, 09 Aug 2001 09:03:24 -0100
To: w thers@UPL. Ari zona. EDU
From Herb Frey <frey@ore2. gsfc. nasa. gov>
Subj ect: Fwd: Inages for Paul Wthers
M me-Version: 1.0
Cont ent - Type: mul ti part/ nm xed;
boundar y="===================== 2443253==_"

Content-Length: 747001
Part s/ attachments:

1 Shown 64 lines Text

2 300 KB | mge

3 451 KB | mge

4 Shown 11 lines Text

Paul :

Attached are two G F versions of the figure you requested,
showi ng QCDs from our prelimnary northern | ow ands survey
superinposed on a shaded relief version of the MOLA topography. Jim
roark prepared this figure, and you nmi ght acknow edge himas well as
reference us. The (QCDs can be referenced to our subnitted paper:

Frey, HV., J. H Roark, K M Shockey, E.L. Frey and S.E. H
Sakinoto , Ancient Low ands on Mars, submitted to GRL, July 2001

A coupl e of inportant points:

(1) [TEXT DELETED]
(2) Ability to find QCDs depends on the current MOLA grid
bei ng used. These were fromthe 64x32 which is not yet officially

released. So this is really a "private conmunication". You are NOT
usi ng the 64x32 gridded data (which you are not yet "allowed" to use
until it is in the public domain). You are using a product derived

fromthat by a MOLA team nmenber who is a collaborator and who has
agreed to provide the derived product (not the data). This is

i mportant because NMDAP proposal s that indicate use of non-rel eased
data are in violation of the requirement of the NRA, and such
proposal s have been rejected in past panel reviews for that reason
YOU MUST EMPHASI ZE THAT THE WORK YOU DO W TH MOLA DATA W LL BE DONE
W TH RELEASED MOLA DATA ONLY.

(3) [TEXT DELETED]
[TEXT DELETED]

Have a good one today.

Her b

Abridged email from Herb Frey. The “derived product” that will be provided isthe
QCD dataset. It was later agreed that it was nat necessary for Frey to be a
coll aborator.
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