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Scientific/Technical/Management Section

Objectives and Significance of Proposed Research

Basic objective - Continue our investigations of tectonic ridges in the northern plains of
Mars using MOLA data, theoretical models, and Viking and MOC imagery.

Expected significance – The proposed research will enhance our understanding of the
tectonic history of Mars, the origin of the northern plains, and the possibility of an
ancient northern ocean.

Task 1 – Map these ridges and their properties. Variations in ridge properties will
indicate variations in lithospheric structure or stress regime.

Task 2 – Calculate regional strain magnitudes and directions in the northern plains using
the results of Task 1. This will provide a constraint on tectonic models of the northern
plains.

Task 3 – Model stress and strain in the northern plains. Adjusting the model parameters
to best fit the results of Task 2 will constrain the nature of the lithospheric structure and
loading in the vicinity of the northern plains.

Task 4 – Test the ancient northern ocean hypothesis. Examining those of the ridges that
are proposed as shoreline candidates to see if they lie on an equipotential, and if they
have a tectonic or shoreline process morphology, will either strengthen or weaken the
case for an ancient northern ocean.

Task 5 – Examine photographic images of these ridges. Viking and MOC images may
reveal fine-scale structure on these ridges, occurrences of which can be correlated with
other ridge properties.

Task 6 – Examine depth-diameter relations of a population of subdued craters, visible in
MOLA images of the northern plains, which is not seen in Viking images. This will
constrain the depositional and erosional history of the northern plains and be used to
estimate the extent to which the ridges have undergone modification.

Task 7 – Use a finite-element model to study these ridges. This numerical model will
complement the spherical harmonic model of Task 3.
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Impact of Proposed Research

Figure 1 shows a Viking photomosaic of the northern part of the Utopia impact basin.
Craters are visible on a mottled terrain. Figure 2 shows a digital terrain model generated
from gridded MOLA data available from the Planetary Data System (PDS) [Smith et al.
1999]. Many new features are visible, including a second, subdued, population of craters
and a network of ridges. This comparison forcibly demonstrates that photographic images
do not reveal all of a surface’s secrets. Improved global photomosaics may be
forthcoming from the MOC and THEMIS instruments, however, despite improved
resolution, they will suffer from the same handicaps as Viking did in imaging these
shallow features.

MOLA data reveal that the northern plains of Mars are the flattest known surface in the
solar system and that they are criss-crossed by ridges of likely tectonic origin [Smith et
al., 1998; Withers and Neumann, 2000, 2001]. High-resolution shaded topographic
images of the polar basin, available at http://ltpwww.gsfc.nasa.gov/tharsis/mola.html at
km resolution, show the ridges clearly. A global digital terrain model at 1/32o resolution
is being released to the PDS in January 2001 and higher resolution models will be
publicly available at the start of this study.

The causes of the youth and smoothness of the northern plains are still debated [Smith et
al., 1998, and references therein; Zuber et al., 2000]. The network of ridges is the
dominant, indeed the only, tectonic feature throughout this enigmatic region, which
covers a quarter of the planet. The most complete survey of martian ridges to date, which
mapped over 16,000 ridges, commented that “as is well known, the northern plains have
few ridges” and was not able to identify the network of ridges revealed by MOLA
(Chicarro et al., 1985).

Wrinkle ridges are one of the most commonly observed, yet least understood, classes of
planetary structure [e.g. Schultz, 2000; Watters, 1992]. They occur on all the terrestrial
planets, including Mercury (e.g. Strom et al., 1975), Venus (e.g. Kreslavsky and
Basilevsky, 1998; Bilotti and Suppe, 1999), Earth (e.g. Plescia and Golombek, 1986;
Watters, 1988), the Moon (e.g. Lucchitta, 1976, 1977; Sharpton and Head, 1988), and
Mars (e.g. Plescia, 1991, 1993; Watters and Robinson, 1997). Observations of martian
wrinkle ridges have been used to constrain the planetary thermal history (e.g. Banerdt et
al., 1992), tectonic history (e.g. Tanaka et al., 1991; Schultz and Tanaka, 1994), volcanic
history (e.g. Watters, 1993), impact history (e.g. Wilhelms and Squyres, 1984; Chicarro
et al., 1985), lithospheric structure (e.g. Zuber and Aist, 1990), and changes in orbital and
rotational dynamics (e.g. Melosh, 1989; Grimm and Solomon, 1986; Schultz and Lutz,
1988).

Studying this network of ridges will enhance our understanding of the tectonic history of
Mars, the origin of the northern plains, and the possibility of an ancient northern ocean.
In earlier work, we began to investigate the distribution and nature of these ridges
[Withers and Neumann, 2000, 2001]. Maps of absolute surface slope were generated
from gridded MOLA topographic data. Ridges stood out as linear regions of greater than
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background slope and were easily identifiable. Then, in the topographic data, these linear
regions were illuminated across-strike and could be confirmed as ridges, rather than
troughs or other features. To date, ridge locations have been mapped, ridge properties
have begun to be mapped, correlations with predicted strain fields have been noted, and
some shoreline candidates have been rejected [Withers and Neumann, 2000, 2001].

The ridges have characteristic wrinkle ridge profiles, characteristic lengths of 100s of
kilometers, characteristic heights of 100 metres, and characteristic flank slopes on the
order of only 1 degree. Ridge spacings vary throughout the northern plains, but are on the
order of 100 km. These spacings are greater than those found on the neighbouring known
wrinkle ridge provinces [Zuber and Aist, 1990, and references therein]. More detailed
studies of ridge properties will enable these ridges to be compared and contrasted to other
wrinkle ridges in the solar system, and let us constrain models for their evolution (Tasks
1, 2, and 5).

The locations of these ridges are shown in Figure 3. Most ridges appear related to
obvious stress centers, such as the volcanic Tharsis Rise, the Utopia impact basin, and the
Alba Patera volcano. Figure 4 shows a prediction of compressive strain in the martian
lithosphere, performed by Banerdt. Almost all of the ridges are orthogonal to the
predicted direction of maximum compressive strain, as expected for wrinkle ridges
underlain by thrust faulting. An obvious exception is the family of radial ridges within
the Utopia impact basin. Previous comparisons of observed and predicted strains on Mars
have had no observed strains in the northern plains, or on a quarter of the planet. With
our observations of strain in the northern plains, tectonic models can be tested more
precisely, which will constrain the lithospheric structure of the northern plains and the
nature of the Tharsis loading [Banerdt et al., 1982; Banerdt, 1986; Banerdt et al., 1992;
Melosh and Raefsky, 1980, 1981; Melosh and Williams, 1989] (Tasks 2, 3, and 7).

Some of these ridges have been suggested as putative shorelines for an ancient northern
ocean by Head et al. [1999]. We examined profiles of several putative shorelines and
found their morphology to be inconsistent with an oceanic origin; shorelines on one side
of the ocean had terraces downslope from ridges  - with the arrangement reversed on the
other side of the ocean [Withers and Neumann, 2000, 2001]. Examining more putative
shorelines will further test the ancient ocean hypothesis (Task 4).

The northern plains have been modified by deposition since ridge formation. The amount
of deposition that has occurred since ridge formation can be estimated by studying depth-
diameter relations in a subdued population of craters not visible in Viking images.
Allowing for the different geometries of ridges and craters, and, consequently, their
different response to erosion and deposition, the extent to which the ridges have been
modified since their formation will be estimated. We will also attempt to stratigraphically
date ridge formation by analysis of ridge-crater superposition and cross-cutting
relationships. This work will also be very useful in constraining the pre-Amazonian
history of the northern plains (Task 6).
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The main focus of this research proposal is the network of ridges. However, quantitative
information on the deposition of materials in the northern plains, provided by the crater
studies described above, will have a major impact on the following questions:

Was the most recent major deposition in the northern plains uniform?
Is the size of this deposition consistent with estimates from outflow channel
studies?
When did this deposition occur?
Can resurfacing models provide several kilometres of fill (as seen in the Utopia
basin) early in martian history, then several hundred metres of fill (as seen in the
subdued craters)?
What can be said about the pre-deposition surface?

Perhaps Task 6 and the question of ridge modification is not the most important task for
our tectonic studies. We nonetheless recognize its importance for a great many other
studies and will not neglect it.
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Technical Approach and Methodology

Task 1 – Topographic profiles will be constructed across the ridges using gridded MOLA
topographic data publicly available from the PDS, and the height, width, flank slopes,
elevation offset, and asymmetry of each ridge will be measured. These results will be
used to see if there are any distinct classes of ridges within the northern plains, or if all
are morphologically similar. They will then be compared to results from previously
studied wrinkle ridge provinces.

Task 2 – Use the methods of Golombek et al. (1991) and the results of Task 1 to estimate
shortening across ridges. Then use ridge spacings and orientations to calculate regional
strain magnitudes and directions throughout the northern plains.

Task 3 – Use the existing models of Banerdt to predict magnitudes and directions of
stress and strain in the northern plains [Banerdt et al., 1982; Banerdt, 1986; Banerdt et
al., 1992]. Compare to the results of Task 2. Models with different lithospheric structure
and different loading can be tested, and rejected if their predictions are inconsistent with
the results of Task 2.

Task 4 – Head et al. (1999) proposed “linear slope changes” in the northern plains as
putative shorelines. Ridges are “linear slope changes” and those close to proposed
shorelines will be examined using gridded MOLA topographic data to test if they lie
along an equipotential, if they have a morphology consistent with formation by shoreline
processes, if there is a preferred equipotential for ridges to form along, and if they are
clearly distinguishable from ridges of tectonic origin, either in morphology or location.
This will complement the studies of Malin and Edgett (1999), who used MOC images to
test the ancient ocean hypothesis. There is still debate about what an ancient martian
shoreline might look like in an image. However, it must once have lain along an
equipotential and almost certainly will not have a topographic profile like that of a
wrinkle ridge. Thus, our proposed studies will be minimally affected by this (sometimes
acrimonious) debate.

Task 5 – As Figures 1 and 2 show, only a fraction of the ridges in the northern plains are
visible in Viking images, and then only if one knows where to look. Viking images of the
northern plains will be examined in conjunction with gridded MOLA topographic data,
and those ridges that are visible in the Viking images will be studied for any interesting
morphological features that are not apparent in the 1 km horizontal resolution MOLA
data. High-resolution MOC images, with metre-scale resolution, are available for a
fraction of the martian surface. Where these cross the ridges, any interesting
morphological features will be noted. MOC images are inappropriate for studying the
morphology of an entire ridge and only the fine-scale “wrinkles” of wrinkle ridges are
likely to appear in these images. Mechanisms by which fine-scale structure is formed on
wrinkle ridges are unclear at present. However, correlating the occurrence of different
types of fine-scale structure with other ridge properties may be useful.
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Task 6 – The northern plains of Mars are late Hesperian to Amazonian in age, while
neighbouring early Hesperian ridged plains are older. The observed continuation of
Lunae Planum wrinkle ridges into the northern plains, predicted tectonic histories of
Mars, and other evidence, suggests that the ridges in the northern plains also formed in
the early Hesperian [Withers and Neumann, 2000; Banerdt et al., 1992]. As the surface of
the northern plains is younger than this, surface modification sufficient to partially hide
craters, but insufficient to obliterate the wrinkle ridges, must have occurred. Recall the
subdued population of craters visible in Figure 2 (MOLA) but not in Figure 1 (Viking).
Crater depth-diameter relations are well known, and hence the depth to which material
has been deposited on different regions of the northern plains can be estimated [Melosh,
1989]. The observed density of subdued craters will help constrain the age of this buried
unit.

Task 7 – The tectonic models of Banerdt (Task 3) incorporate a spherical harmonic
representation of the gravity field and topography as boundary conditions to analytically
solve for the tectonic state of a planet [Banerdt et al., 1982; Banerdt, 1986; Banerdt et al.,
1992]. A complementary tectonic model, based on the numerical method of finite-
element analysis, will also be used to study stress and strain in the martian lithosphere
[Melosh and Raefsky, 1980, 1981; Melosh and Williams, 1989]. This model is better able
to investigate the effects of variations in lithospheric thickness or loading on a small
spatial scale.
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Relevance of Proposed Research

This proposed research enhances the scientific return of the Mars Global Surveyor
mission in the following ways:

A – Discovery and characterization of an unsuspected class of tectonic features on the
northern plains, an enigmatic region of near global scale, of Mars.

B – Uses these features to constrain global scale tectonic models, with special emphasis
on Tharsis.

C – Tests the ancient northern ocean hypothesis.

D – Constrains the resurfacing history of the northern plains of Mars.

Enhancement C indirectly addresses the issue of extra-terrestrial biology, an issue that
thoroughly permeates NASA’s plans and aims.

All these enhancements satisfy the Science Goal of the Space Science Enterprise
Strategic Plan of “Understand the nature and history of our Solar System” and the two
Science Objectives of “Characterize the history, current environment, and resources of
Mars, especially the accessibility of water” and “Investigate the processes that underlie
the diversity of solar system objects” [Office of Space Science, 1997].

The National Academy of Sciences’ Committee on Lunar and Planetary Exploration
(COMPLEX) has advised NASA on NASA’s plans [COMPLEX, 1994].

It stated a primary objective for understanding planets to be: Specify the nature and
sources of stress that are responsible for the global tectonics of Mars. Enhancements A
and B address this objective.

It stated another primary objective to be “Advance significantly our understanding of
stratigraphic relationships for all solid planets.” Enhancement D addresses this objective.

COMPLEX also posed several key questions for understanding the surfaces and interiors
of solid bodies.

It asked: How do global- versus local-scale processes contribute to the observed
tectonics? Enhancements A and B address this question.

It asked: How did the Tharsis and Elysium bulges on Mars form, and what do they imply
for the state of stress in the crust and the dynamics of the interiors of the planet?
Enhancement B addresses this question.

It asked: What are the erosional and sedimentation histories of Mars? Enhancements C
and D address this question.
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It asked: To what extent have materials been redistributed across their surfaces?
Enhancements C and D address this question.
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Outline of Plan of Work

First six months

End Task 1 Map ridges Neumann, Withers
End  Task 2 Calculate regional strains Neumann, Withers
Start  Task 3 Theoretically model tectonics Banerdt

Present results at a scientific meeting
Submit paper covering previous work and results of Tasks 1 and 2

Second six months

Continue Task 3 Theoretically model tectonics Banerdt
Start  Task 4 Test ancient northern ocean hypothesis Withers
Start  Task 5 Examine Viking and MOC images Withers
Start  Task 6 Study subdued population of craters Melosh, Withers

Present results at a scientific meeting and at a MOLA Science Team meeting

Third six months

Continue Task 3 Theoretically model tectonics Banerdt
End  Task 4 Test ancient northern ocean hypothesis Withers
Continue Task 5 Examine Viking and MOC images Withers
Continue Task 6 Study subdued population of craters Melosh, Withers
Start  Task 7 Finite-element analysis Melosh, Withers

Present results at a scientific meeting
Submit paper covering results of Task 4 and latest results from Tasks 3, 5, and 6

Fourth and final six months

End  Task 3 Theoretically model tectonics Banerdt
End   Task 5 Examine Viking and MOC images Withers
End Task 6 Study subdued population of craters Melosh, Withers
End Task 7 Finite-element analysis Melosh, Withers

Present results at a scientific meeting and at a MOLA Science Team meeting
Submit paper on final results from this research proposal
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Expected Contributions

Melosh (Principal Investigator)

Professor Melosh has studied planetary tectonics for many years. He is an expert on
finite-element modelling of tectonic problems and all aspects of impact cratering [Melosh
and Raefsky, 1980, 1981; Melosh and Williams, 1989; Melosh, 1989].

• Responsible for quality and direction of research, and for use of awarded funds
• Supervisory role for Withers
• Direct crater analysis for Task 6 
• Direct initial finite-element studies for Task 7

Withers (Co-Investigator and Science PI)

Mr. Withers, a PhD student, initiated this project during a summer research placement at
NASA’s Goddard Space Flight Center. He presented initial results from that placement at
Fall AGU, 2000 [Withers and Neumann, 2000].

• Lead role in proposal preparation
• Responsible for day-to-day progress in most Tasks
• Direct test of ancient northern ocean hypothesis for Task 4
• Direct investigation of Viking and MOC images for Task 5

Banerdt (Collaborator)

Dr. Banerdt, a member of the MOLA Science Team, wrote the standard reference on
martian tectonics [Banerdt et al., 1992]. He uses theoretical tectonic models to constrain
lithospheric structure and loading on the terrestrial planets [Banerdt et al., 1982; Banerdt,
1986; Banerdt et al., 1992].

• Use theoretical models to predict stress and strain for Task 3

Neumann (Collaborator)

Dr. Neumann, a member of the MOLA Science Team, leads the processing of raw
MOLA data into a scientifically useful product. He supervised the summer research
placement of Withers and is intimately familiar with the MOLA data.

• Continue to guide Withers through use of large gridded data sets
• Assist in automating the measurement of ridge properties for Tasks 1 and 2
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Facilities and Equipment

Existing facilities and equipment at the University of Arizona, the Jet Propulsion
Laboratory, and the Goddard Space Flight Center will be used to perform this proposed
research.
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Curriculum Vitae – Principal Investigator Melosh

H. Jay Melosh is a Professor of Planetary Science in the Lunar and Planetary Laboratory
of the University of Arizona.  He is a specialist in the physics of impact cratering on both
the Earth, other planets and on small bodies such as comets and asteroids.  He and his
students have developed computer codes to accurately simulate cratering events both in
the laboratory and on small bodies where fracture plays an important role in the cratering
process.  He developed ideas on how the Martian and lunar meteorites survived ejection
at high speed while suffering little shock damage and speculated on the possibility of
interplanetary panspermia as a result of the ejection of living organisms.  Other work
involved study of the orbital evolution of impact ejecta and its ultimate fate.  Melosh has
also been active in the study of the effects of large impacts on the Earth’s biosphere.
Author of a well-received monograph on impact cratering, Melosh has considerable
experience with theoretical study of the impact process.

BORN: June 23, 1947, Paterson, New Jersey
ATTENDED: Princeton University, 1965-1969, A.B. (physics) magna cum laude

Caltech 1969-1972, Ph.D. (physics and geology)

Academic Experience
Graduate Teaching Assistant, Caltech, 1969-1971
Visiting Scientist, CERN (Geneva, Switzerland), 1971-1972
Research Associate, University of Chicago, Enrico Fermi Institute,

                               1972-1973
Instructor in Geophysics and Planetary Science, Caltech, 1973-1975
Assistant Professor of Planetary Science, Caltech, 1976-1978
Associate Professor of Planetary Science, Caltech, 1978-1979
Associate Professor of Geophysics, SUNY, Stony Brook, 1979-1982
Associate Professor of Planetary Science, Univ. of Arizona, 1982-1985
Professor of Planetary Science, Univ. of Arizona, 1985-present

Fellowships and Honors:
Phi Beta Kappa
Sigma Xi
NSF Fellowship, 1969-1972
Best Scientific Secretary Prize, Int'l Summer School of Theoretical

                           Physics, Erice,Sicily, 1972
Fellow of the  Meteoritical Society (July, 1988)

 Fellow of the Geological Society of America (November, 1988)
Fellow of the American Geophysical Union (January 1993)
Paul Simon Guggenheim Fellow, 1996-1997.
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Recent National and International Committees and Panels
Member, Origin of Sedimentary Basin Task Force, International

Lithosphere Program, French Petroleum Institute, Malmaison,
France

Scientific Observer, European Science Foundation, Network on "The
role of impact processes in the geological and biological evolution of
planet Earth". 1993-1996.

Editorial Committee, Annual Reviews of Earth and Planetary Science,
1997-2002.
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