Exploring the ionosphere of Mars

Paul Withers
Boston University
(withers@bu.edu)

Department of Physics and Astronomy, University of Iowa, IA

Tuesday 2012.03.20 13:30

This hazy region contains the atmosphere and ionosphere of Mars
This is Mars

0.5 x R-Earth
1.5 AU from Sun
Same rotation rate as Earth
Carbon dioxide atmosphere
100x smaller surface pressure
Target of many spacecraft in last 15 years
What is an ionosphere?
An ionosphere is a weakly ionized plasma embedded within an upper atmosphere, often produced by photoionization.
What does that actually mean?

<table>
<thead>
<tr>
<th></th>
<th>Atmosphere</th>
<th>Ionosphere</th>
<th>Space physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Gravity</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Sunlight</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Magnetic fields</td>
<td>X</td>
<td>?</td>
<td>✓</td>
</tr>
<tr>
<td>Composition</td>
<td>Neutrals</td>
<td>Ions, electrons, and neutrals</td>
<td>Protons and electrons</td>
</tr>
</tbody>
</table>

Preamble Techniques Observations
The ionosphere of Mars

Neutral atmosphere is mainly CO_2, O becomes significant at high altitudes

O_2^+ is main ion (?) at all altitudes

EUV photons responsible for main M2 layer

Soft X-ray photons and secondary ionization responsible for lower M1 layer

Transport only important in topside ionosphere

Withers et al. (2009) Decadal Survey white paper
Goal for this talk

• Two measurement techniques are highly complementary to each other

• Show several examples of situations where using both datasets is helpful

• Science themes are spatial structure of Mars ionosphere, influences of the Sun and magnetic fields
Radio occultation technique

MGS

MARS on Earth

Antenna
Radio occultation results

Withers et al. (2009)
MARSIS radar sounding

Gurnett et al. (2008)

Techniques

Observations
MARSIS results

Gurnett et al. (2008)
Complementary techniques

Radio occultation
- Precise vertical scale
- 1 km vertical resolution
- Full vertical coverage
- ~200 km horizontal averaging
- Alias horizontal structure to vertical
- Limited opportunities

Radar sounding
- Derived vertical profiles affected by noisy ionograms and coarse time resolution
- Topside only, monotonic increase
- No horizontal averaging
- Many opportunities, no geometric limitations
Mars is magnetically crazy

Earth magnetic field

Mars magnetic field

www.windows2universe.org

Brain (2002)
Magnetic field at Mars

Based on model of Arkani-Hamed (2004)
What is the ionosphere like in strongly-magnetized regions?

Oblique echoes seen over strong and vertical crustal magnetic fields

Gurnett et al. (2008) (both figs)
Ionosphere is “inflated”

Gurnett et al. (2008)
Enhancements are localized

Nielsen et al. (2007)

Peak electron densities

Enhancements seen over strong and vertical crustal magnetic fields

Angle between field and vertical

Orbit 2359 (middle track)

Nielsen et al. (2007)
Radio occultation view differs

Orbit 7344 2009-09-23T23:27:00.516

MEX RS electron density profile from orbit 7344 on 23 September 2009 at solar zenith angle of 52 degrees, latitude 34°S, longitude 137°E.
Where is the top of the ionopause?

Ionopause is not always present
When present, typically around 400 km

Duru et al. (2009) (both figs)
Occultations can’t see the ionopause

MEX RS electron density profile from orbit 1949 on 22 July 2005 at solar zenith angle of 69 degrees, latitude 42°N, longitude 24°E.

MEX RS electron density profile from orbit 9613 on 14 July 2011 at solar zenith angle of 82 degrees, latitude 82°S, 180°E.
Structure of topside ionosphere

Kopf et al. (2008)

Each observed cusp (dip) means a local maximum in plasma density

This derived profile has some inherent flaws, is forced to assume a smooth shape
Lots of topside features seen by occultations

MEX RS electron density profile from orbit 2840 on 28 March 2006 at solar zenith angle of 55 degrees, latitude 15°N, longitude 217°E.

MEX RS electron density profile from orbit 2463 on 13 December 2005 at solar zenith angle of 75 degrees, latitude 66°N, longitude 103°E.
Lots of different structures

MEX RS electron density profile from orbit 2436 on 5 December 2005 at solar zenith angle of 78 degrees, latitude 67°N, longitude 235°E.

MEX RS electron density profile from orbit 2402 on 26 November 2005 at solar zenith angle of 81 degrees, latitude 66°N, longitude 341°E.
Solar Flares

SOLAR FLARE PHOTOGRAPHED AT BOYDEN OBSERVATORY
ON THE 11TH AUGUST 1972, AT 14h44m SAST

The accompanying photograph, taken by Mr. H. Bacik and Mr. J. P. has been sent to us by Prof. A.H. Jarrett, Director of the Boyden Observ.

The photograph was taken with a 15 cm aperture solar telescope using a neural filter in order to reduce the sensitivity to the visible portion of the spectrum.

http://www.assabfn.co.za/pictures/solar_boydenflare_historical_articles.jpg

Approx. size of Earth
High frequency of MARSIS measurements is invaluable

Seven minutes of MARSIS peak electron densities
Increase by 30% for a few minutes

Nielsen et al. (2006)

X1.1 flare on 15 September 2005
GOES X-ray fluxes surge at time of MARSIS observations
Flares also seen by radio occultations

15 April 2001

Observations and predictions for X14 flare on 15 April 2001

Mendillo et al. (2006)

Lollo et al. (2012)
Exploring the ionosphere of Mars

- MARSIS and radio occultations are highly complementary for exploring ionospheric spatial and temporal structure
- Key questions are the effects of the Sun and magnetic fields
- MAVEN mission (2013) will reveal chemistry, dynamics, and energetics
Figure 1A: Electron density profile from orbit 2436 on 5 December 2005 at solar zenith angle of 78 degrees, latitude 67°N, longitude 235°E. The grey solid line is an exponential fit to densities between 150 km and 300 km that has a scale height of 33 km.
Figure 1B: Electron density profile from orbit 2402 on 26 November 2005 at solar zenith angle of 81 degrees, latitude 66°N, longitude 341°E. The lower and upper grey solid lines are exponential fits to densities at 150-220 km and 220-400 km, respectively, that have scale heights of 22 km and 120 km.
Figure 1C: Electron density profile from orbit 2463 on 13 December 2005 at solar zenith angle of 75 degrees, latitude 66°N, longitude 103°E. The lower, middle, and upper grey solid lines are exponential fits to densities at 150-220 km, 220-280 km, and 280-315 km, respectively, that have scale heights of 28 km, 190 km, and 21 km.
Figure 1D: Electron density profile from orbit 2445 on 8 December 2005 at solar zenith angle of 77 degrees, latitude 67°N, longitude 70°E. Electron densities are nearly uniform between 300 km and 580 km.
Figure 1E: Electron density profile from orbit 1949 on 22 July 2005 at solar zenith angle of 69 degrees, latitude 42°N, longitude 24°E. Electron densities drop below 10^9 m$^{-3}$ by 200 km altitude.
Figure 1F: Electron density profile from orbit 9613 on 14 July 2011 at solar zenith angle of 82 degrees, latitude 82°S, 180°E. Electron densities remain above 10^9 m$^{-3}$ to 700 km altitude.
Figure 2A: Electron density profile from orbit 4258 on 30 April 2007 at solar zenith angle of 68 degrees, latitude 46°N, longitude 278°E.
Figure 2B: Electron density profile from orbit 2416 on 30 November 2005 at solar zenith angle of 79 degrees, latitude 67°N, longitude 42°E.
Figure 2C: Electron density profile from orbit 2541 on 4 January 2006 at solar zenith angle of 66 degrees, latitude 60°N, longitude 17°E.
Figure 2D: Electron density profile from orbit 2435 on 5 December 2005 at solar zenith angle of 78 degrees, latitude 67°N, longitude 333°E.
Figure 2E: Electron density profile from orbit 2840 on 28 March 2006 at solar zenith angle of 55 degrees, latitude 15°N, longitude 217°E.
Figure 2F: Electron density profile from orbit 7344 on 23 September 2009 at solar zenith angle of 52 degrees, latitude 34°S, longitude 137°E.