Meteoric layers in planetary ionospheres

Paul Withers
Boston University

Abstract SA11B-1919
withers@bu.edu
Thanks to John Plane, Diego Janches, Tolis Christou, Jeremie Vaubaillon, Martin Paetzold

Fall AGU meeting
San Francisco, California
2013.12.09, 0800AM - 1220PM
A fireball meteor in Earth’s atmosphere augmenting metal ion densities in the ionosphere, as viewed from the International Space Station (ISS).

Credit: Ron Garan, ISS Expedition 28 Crew, NASA
Fig 1A of Withers (2012)
1999 Leonid storm as seen from Leonid Multi-instrument Aircraft campaign with 50 mm camera.
Photo: Shinsuke Abe and Hajime Yano, ISAS.

http://leonid.arc.nasa.gov/HDTV_LEO50mm-1.jpg
1966 Leonid storm as seen from Table Mountain Observatory, California, by James W. Young.
Photo: TMO/JPL/NASA.
http://leonid.arc.nasa.gov/66leonid1a.jpg
Meteoric ion densities measured above Puerto Rico by a rocket-borne mass spectrometer. In these post-sunset measurements, photo-produced plasma (NO$^+$ and O$_2^+$) at these E region altitudes is sparse. Note the narrow width (about 2 km) of the meteoric layer and its large peak density of 5×10^4 cm$^{-3}$.

Reproduced from Figure 8.11 of Grebowsky and Aikin (2002)
Average metal ion densities (total of all metal species) from many sounding rocket flights. There is more than an order of magnitude scatter in the concentrations.

Fig 8.5 of Grebowsky and Aikin (2002)
Sporadic E layer at Earth

Sporadic E = Dense layers of plasma at E-region altitudes that aren’t related to normal E layer
Plasma persists into night, requires long-lived ions – atomic metal ions

Formed by wind shear in strong, inclined magnetic field

Ionosonde data from Arecibo

Figure 2a of Mathews et al. (1997)
Making narrow layers on Earth

Mechanism for producing narrow layers of metal ion plasma by wind shear in a magnetic field that is strong and inclined

Fig 5 of Grebowsky and Pharo (1985)
Normal ionospheric profile at Mars

Fig 1 of Withers et al. (2008)
Mars profile with meteoric layer

Fig 2 of Withers et al. (2008)
Another Mars example

On Mars, meteoric layers are relatively broad (10 km), have a typical observed density of 10^4 cm^{-3}, and occur at 90 km (~0.01 Pa) altitude. Meteoric layers are found only sporadically on Mars.
Model prediction for Mars

Fig 11 of Whalley and Plane (2010)
Venus profiles:
With and without meteoric layers

Fig 1 of Paetzold et al. (2009)
More Venus examples

Fig 2 of Paetzold et al. (2009)
Occurrences of layers on Venus

Is absence of layers at SZA < 60° real?

Fig 3 of Paetzold et al. (2009)
Model prediction for Venus

Figure 2b of Grebowsky et al. (2002)

Significant improvements needed
Metal ion layers at Jupiter? Data

Low altitude portion of profile

Narrow layers near 400 km may be metal ion layers

Figs 4 and 5 of Hinson et al. (1998)
Metal ion layers at Jupiter? Model

Fig 3 of Kim et al. (2001)
Metal ion layers at Neptune? Data

Low altitude portion of egress occultation
Narrow layers at 600-800 km may be metal ion layers

Full profile Fig 8 of Lindal (1992)

Fig 2 of Lyons (1995)
Metal ion layers at Neptune? Model

Fig 4 of Lyons (1995)
Outstanding questions

• How similar are the major chemical and dynamical processes at Venus and Mars to the major processes at Earth?
• What is the meteoroid flux at other planets?
• Are putative detections in the outer solar system real?