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Modeling:

The model used is an adaptation of the 1-D ionospheric model introduced by Martinis et al. [2003] and Discussion & Conclusion:

most recently described by Mendillo et al. [2011]. The neutral atmosphere is derived from the Mars

Climate Database [Forget et al., 1999; Lewis et al., 1999]. Solar irradiance, is taken from the output of The results shown here allow for analysis of flares for which measurements are not available (e.g. Apr 15, postflare). Solar irradiance increases at all wavelengths during the flare, but the largest

the Solar2000 (v1.24) model [Tobiska et al., 2000; Tobiska and Bouwer , 2004], is held constant during relative increases occur at the shortest wavelengths (< 5 nm). Similarly, the strongest relative increase in electron density occurs in the M1 region of the ionosphere (100-110 km). The peak

a simulation and is attenuated through the atmosphere. lon-electron pairs are produced by the solar irradiance at the shorter wavelengths occurs a few minutes after the longest wavelengths peak, and decays to pre-flare levels more slowly. Likewise, the peak electron density enhancements in

irradiance (primary ionization) in accordance with the relevant ionization cross-sections and neutral the M1 region occur a few minutes after the peak in the M2 region, and persist much longer. Changes in electron density are rapid at flare onset, with values doubling in five minutes or less at all

number densities. The production of additional ion-electron pairs by electron impact ionization altitudes below 125 km. Electron densities at different altitudes reach their maximum values at different times. Electron densities at the M2 layer (135 km) have nearly returned to their pre-flare

(secondary ionization) is represented by a parameterization of the ratio of secondary to primary values at 08:39, whereas electron densities in the M1 region (108 km) are still significantly elevated. The 08:19 profile of Fig. 8 shows the peak electron density is found in the M1 region, not in the

ionization. lon densities evolve due to ion-neutral chemical reactions involving charge exchange, which M2 region. This is extremely unusual, as this phenomenon has not been observed or predicted for the dayside ionosphere of Mars.

transfer charge from one species of ion to another without changing the net plasma density. lon-

electron pairs are neutralized by the dissociative recombination of molecular ions. The rates of these To conclude, MGS observations of the ionosphere of Mars during solar flares on 15 and 26 April 2001 have been reproduced satisfactorily by our ionospheric model. A key component of the model

loss processes depend on the T.. Wavelengths shortward of 5 nm dominate the attenuated flux at is the W-value, the energy required to produce one ion-electron pair by electron impact ionization. Our simulations are most consistent with observations for a W-value near 28 eV, as suggested by

altitudes below 110 km where the ionospheric response to a solar flare is largest. We expand the two Simon Wedlund et al. [2011], rather than the 34-35 eV value that has extensive heritage from studies of the terrestrial atmosphere. The ionosphere changes rapidly at flare onset, with timescales

wavelength bins in this region of the spectrum used by Mendillo et al., [2011] into 20 shortest of a few minutes, but relaxes to its quiescent state more slowly after the flare peak, with timescales of tens of minutes. The low altitude M1 region of the ionosphere is affected much more by flares

wavelength bins and include suitable cross-sectional information. than is the higher altitude M2 region. We predict that the peak electron density in the M1 region can exceed the peak electron density in the M2 region for short periods during intense solar flares.
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