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A “step”, or change In
gradient, in electron
density at ~160 km
can be seen in MEX
RS, MGS RS, and
MEX MARSIS data.
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 Whatis it?
 Why is it not
apparent in Mariner
9, Viking Orbiter, or
Viking Lander data?
e Ermmrae i ° Why is it not
MEX data electron density [10"m] predicted by models?
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This “step” is
visible in many
MGS profiles
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Figure 6. Thesolid and dash-dot curve is the estimated profile of the top side electron densities derived
using the lamination technique. The solid curve covers the densities for which echoes were observed,
and the dash-dot curve the assumed exponential decrease. Note, the dash-dot curve starts at the derived
electron density (star) at the height of the spacecraft. The dashed curve is a Chapman layer fitted to
the observations. In the plot is noted the associated maximum electron density (148279 el/cm®) and
altitude of the maximum (~124 km) in the sub solar region, together with the neutral scale height
(10.0 km), a top-side scale height (~28 km), and solar zenith angle (~28 degrees).

It also sees a “step”
in the topside




Typical lonospheric Profiles for Earth and Mars
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Earth (Hargreaves, 1992) Mars (MGS RS data)
F layer due to EUV photons Transport important above ~180 km
E layer due to soft X-rays Main peak at 140 km due to EUV
D layer due to hard X-rays photons

Lower peak at 110 km due to
Soft ~ 10 nm, hard ~ 1 nm X-rays. Lower peak is very

variable and often absent




Mars ionospheric chemistry

MARS GLOBAL MEAN DENSITIES

* CO, + hv->CO," + e (production)
« CO,"+ 0O ->0,"+ CO (chemistry)
« O,"+e->0+0 (loss)

* The presence of neutral O affects
lonospheric chemistry and
electron densities

63 7 75 8 85 9 95 10 105 11 1.5 12 125 13
LOG,, (NUMBER DENSITY, cai”)

Bougher et al., 2002

* Few observations of neutral atmosphere composition exist

» O/CO, ratio is predicted to vary with altitude, season, time of
day, etc

« This is a challenge for ionospheric modelling and data analysis
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Data and model for Mars atmospheric composition from Viking 1.
Hanson et al. (1977) and Nier and McElroy (1977)




Planetary Properties at lonospheric Peak

Venus Earth E-region \ETE
g (m s?) 8.9 9.8 3.7
Solar distance (AU) | 0.7 1.0 1.4-17
Z ek (kM) 140 110 120
Neutrals CO, N,, O, CO,
lons O,* O,*, NO* O,*

Production process

CO,+hv -> CO,* + e
CO,*+0 -> CO + O,*

N,+hv -> N,*+ e
N,*+ O -> N + NO*
O,+hv ->0O,* +e

CO,+hv->CO,*+e
CO,"+0 -> CO + O,*

Loss process Dissociative Recombination | DR DR
N, (cm3) 1E 11 1E13 1E 11
N, (cm™3) 7TE5 (= 2E5
T, (K) 200 300 200
T, (K) 1000 300 — but ~1000 at 150 | 200

km
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Fig. 6. Plots of observed ion concentrations versus altitude. The solid lines labeled N, represent the sum of the individual ion concentrations.
The dashed I|_ncs in Figure 6a are eyeball fits to the CO,™ and O, (N, ) data and correspond to the scale heights shown. At the right of each plot
the solar zenith angle and sublander Mars coordinates are shown at several altitudes.

The only observations of Mars ionospheric composition (Hanson et al., 1977)
No “step” or similar feature is visible on the topside
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Fig. 6. Vertical electron density profiles in the Mars ionosphere as
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Mariner 9 and Viking Orbiter radio occultation R EE R I LS
electron density profiles (Kiore 1992). No obvious “steps” are visible.
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Mariner 9 and Viking Orbiter radio occultation

electron density profiles (Kiore 1992). No obvious “steps” are visible.
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The daytime Martian ionosphere consists of a main layer M2 at typically 135 km al-
titude and a secondary layer M1 at 110 km altitude, both formed by solar radiation at
EUV and X-ray, respectively. The peak altitudes and peak densities vary according to
the diurnal changes in solar zenith angle as expected when under solar control. These
layers are controlled by photochemical processes and can be represented as Chapman
layers. However, the topside ionosphere is more complex and difficult to model. It
is affected by plasma transport due to dynamical processes and changing ion chem-
istry (increasing amounts of O+ ions, as observed by the Viking Landers). New Mars
Express Radio Science experiment MaRS observations show the transition from the
region around the photochemically-controlled EUV peak, which is effectively an O2+
Chapman layer, to the topside in great detail. We discuss how these observations can
be used to better understand the complex topside ionosphere, relating them to Mars
Global Surveyor observations and predictions from numerical models. Vertical pro-
files of excess topside electron density have shapes that resemble a Chapman function.
We shall investigate whether these shapes are caused by photochemical processes or
the transition to a transport-dominated region.
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Fig. 6. lon density profiles. The solid lines are calculated profiles
with outward diffusive velocity upper boundary conditions of | km s-*
for all ions except H*, which was 10 km s~*. The circles are O,* data,
the triangles are O data, and the crosses are CO,* data, all being
from the Viking 1 RPA experiment [Hanson et al., 1977].
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Viking-era models do not show any
topside “step”.

150
1-D models include photochemistry
and vertical transport by diffusion. 10— —— L = T e
“Transport processes begin to control ION CONCENTRATION (cm™)

the ion density distribution at altitudes
above 200 km.” (Chen et al., 1978)

Fig. 11. A comparison of the measured ion concentration I‘rpm
Viking | profiles and a theoretical model ionosphere in_chcmlcul
equilibrium. Only ions with concentrations greater than 200 ions cm™?
are plotted. NO* could not be uniquely identified from the RPA data.
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Figure 8. The calculated solar cycle minimum density profiles for case 4 along radial lines for different
latitudes in the X-Z plane compared with Viking observation.

Recent MHD models do not show a topside “step” (Ma et al., 2004)
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Figure 1. Composition of Mars’ upper atmosphere (a) and ionosphere (b) at low solar activity. Primary
ions are shown by solid lines, secondary ions by dashed lines. Dotted lines are the Viking 1
measurements of O, CO,, and O (from left to the right).

Recent 1-D photochemistry/diffusion models do not show a “step”, although this figure
does hint at interesting behaviour at 180 km. SZA=60 degrees. Krasnopolsky (2002)
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MGS RS data
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Red curves = Two
Chapman fits

First fit to X-ray peak
in observed Ne(z)
Second fit to residual 40 60 80 100
after first fit subtracted Ne (1E9 m®)

from observed Ne(z)

After fits to the X-ray and EUV ionospheric layers are
removed, excess electron density in the topside is
visible around 175 km.

Green curve = Sum of
two Chapman fits

Blue curve = Residual
after both fits subtracted
from observed Ne(z)



MGS RS data

3012G12A.EDS 240
2003-01-12 220
Lat = 76N 200
LST = 04.4 hrs
SZA =75 deg 480
160
Peak altitude,

peak electron density,
and neutral scale
height for three fitted
Chapman layers:
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112 km, 47 m=3, 9 km
137 km, 86 m=3, 9 km 40 60 80 100
173 km, 22 m-3, 10 km Ne (1E9 m*)

The sum of three Chapman layers (green curve) is a good match to the observed
Ne(z) (open black circles). The residuals (blue curve) are consistent with the
uncertainties in the observed Ne(z) (vertical black lines).



MGS RS data
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Red curves = Two
Chapman fits

First fit to X-ray peak
in observed Ne(z)
Second fit to residual 40 60 80 100 120
after first fit subtracted Ne (1E9 m®)

from observed Ne(z)

After fits to the X-ray and EUV ionospheric layers are
removed, excess electron density in the topside is
visible around 180 km.

Green curve = Sum of
two Chapman fits

Blue curve = Residual
after both fits subtracted
from observed Ne(z)



MGS RS data
3081P28A.EDS
2003-03-22

Lat = 81N

LST =124 hrs
SZA =71 deg
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115 km, 42 m=3, 12 km
140 km, 75 m=3, 9 km 40 60 80 100 120
174 km, 7.8 m3, 11 km Ne (1E9 m*)

The sum of three Chapman layers (green curve) is a good match to the observed
Ne(z) (open black circles). The residuals (blue curve) are consistent with the
uncertainties in the observed Ne(z) (vertical black lines).



MEX RS data In this example production functions

2005-12-31 Orbit 2528 are added together
Lat = 61.0N Lon = 211E Ne proportional to square root(PF)

LST =13:24 hrs Ls = 349.2 deg
SZA =67.7 deg
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MEX RS data In this example production functions
2006-01-01 Orbit 2531 are added together

Lat = 60.7N Lon = 277E Ne proportional to square root(PF)
LST =13:26 hrs Ls =349.7 deg

SZA = 67.3 deg
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Why fit a Chapman Layer to the

topside ionosphere?

a?ape described by only three parameters (N, z,
Electron density decreases rapidly below peak
altitude, decreases slowly above peak altitude.
Any fit to the topside “step” must not affect
electron densities around the ionospheric peak
significantly.
This mathematical function has been used
previously to describe ionospheric regions
controlled by photochemistry and regions
controlled by diffusion

This choice of fitting function does not imply that
the topside “step” is a classical monochromatic,
iIsothermal, photochemical Chapman layer.




Hypotheses

* Change in O/CO, ratio with altitude makes O,
not O,*, the dominant ionospheric species.
Subsequent change in recombination rate
and/or diffusion coefficient affects electron
density profile.

« Change in temperature with altitude affects scale
height, which affects the change in optical depth
with altitude and diffusion. Both of these can
affect the electron density profile.

* Transition from photochemistry-dominated
regime to diffusion-dominated regime.



Lack of Previous Observations and
Theoretical Predictions

* Vertical resolution of Viking RPA measurements was ~5
km, so this “step” would be difficult to distinguish from
the general trends in the topside.

* Mariner 9 and Viking Orbiter RS profiles are no longer
available in digital format. Their noise level was 103 cm-3,
comparable with that of MEX and smaller than the MGS
value of 3 x 103 cm-3. This lack of detection is a puzzle.

* The scarcity of observations of the composition and
temperatures of the Mars neutral upper atmosphere and
lonosphere means that many model inputs are poorly
constrained. In this situation, models are often tuned to
reproduce existing observations, rather than fully explore
the allowed regions of parameter space.



Conclusions

* A step, ledge, layer, or feature in the
topside Mars ionosphere has been

observed by MEX RS, MGS RS, and
MARSIS.

* This is not visible in prior observations nor
IS it predicted by existing models.

* Hypotheses for the origin of this feature
include vertical variations in chemistry,
temperature, or the importance of
photochemistry relative to transport.
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Figure 4. Mars Thermosphere General Circulation
Model (MTGCM) equatorial fields and their variations
over the solar cycle. (a) Mid-afternoon (LT = 1500,
solid), and early morning (LT = 0400, dashed) tem-
perature profiles over 100 to 220 km for SMIN, SMED,
and SMAX cases; (b) midafternoon (LT = 1500) and
early morning (LT = 0400) O/CO, profiles over 100
to 220 kin for the same 3-EUV flux cases. At the F1-
ionospheric peak (~130 km) at LT=1500, the O-mixing
ratio varies from ~2-4% over the solar cycle. Mixing ra-
tio curves are delineated as follows : LT=1500 (solid)
and LT=0400 (dashed) for SMIN, SMED, and SMAX
cases.

Predicted O/CO, ratio varies greatly

Bougher et al. (1999, above) and
(2000, right).

Height (km)

Height (km)

220[ 5" T
a: min
L b mod
200 — €I max
- Northern
180+
summer
160 solstice
I
140 i
0.001 0.010 0.100 1.000 10.000
0/C0, mixing ratio
220[ b > e,” b*
L 0: min P APL A
b: mod F /* 0.9
200 F c: mox ,’}, P
180 Southern o _
- summer ’ ]
160~ golstice ‘
L — 1T=15
L -== LT=
140
120 [ e
0.001 0.010 0.100 1.000 10.000

0/C0, mixing ratio

Figure 4. MTGCM subsolar latitude variations over the solar cycle for solstices. (a) Norithern
summer solstice (NSL): midafternoon (LT = 1500, solid lines), and midnight (LT = 0000, dashed
lines) O/ profiles over 120 to 220 km for min, mod, and max cases. {b) Southern summer solstice
(SSL): midafternoon (LT = 1300, solid lines), and midnight (LT = 0000, dashed lines) Q/ profiles
over 120 to 220 km for min, mod, and max cases.
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The O,*/CO,* ratio is affected by the O/CO, ratio
Hanson et al. (1977)
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ionospheric electron density
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