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ABSTRACT

Planetary satellites are an integral part of the heirarchy of planetary systems.

Here we make two predictions concerning their formation. First, primordial

satellites, which have an array of distinguishing characteristics, form only

around giant planets. If true, the size and duration of a planetary system’s

protostellar nebula, as well as the location of its snow line, can be constrained

by knowing which of its planets possess primordial satellites and which do not.

Second, all satellites around terrestrial planets form by impacts. If true, this

greatly enhances the constraints that can be placed on the history of terrestrial

planets by their satellites’ compositions, sizes, and dynamics.
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The formation of stars from gas and dust is a fundamental astrophysical process, yet

stars do not form alone. A large and rapidly growing number of stars are known to be

orbited by debris disks or planets. A comprehensive understanding of the life cycle of

protostellar nebulae requires consideration of all of the types of condensed objects that

form within them, not just stars. This includes planets, satellites, and objects analogous

to asteroids or Kuiper belt objects. Many studies have investigated how the properties of

planets and belts of smaller objects can be used to explore the formation of the planetary

system, yet satellites have been somewhat neglected.

Here we explore how the existence and nature of a planet’s satellite system can be used

to constrain how the planet formed. We make two predictions concerning the formation of

planetary satellites and investigate their consequences. First, we predict that primordial

satellites, which only form in dense regions of a protostellar nebula, are found only around

giant planets. The distribution of primordial satellites in a planetary system can be used

to constrain the location of a protostellar nebula’s snow line and thereby to empirically

constrain whether close-in extrasolar planets formed in-situ or migrated to their present

locations. Second, we predict that all satellites around terrestrial planets formed by impacts.

The composition of all terrestrial planets and their satellites reflects mixing across a broad

region of the protostellar nebula. Rapid advances in observational capabilities suggest that

the first satellite of an extrasolar planet will soon be discovered (Sartoretti and Schneider,

1999; Kipping et al., 2009). Our predictions outline the potential significance of such

discoveries for the histories and current states of these satellites, planets, and planetary

systems.

All planets in our solar system can be classified as either terrestrial planets (Mercury,

Venus, Earth and Mars) or giant planets (Jupiter, Saturn, Uranus and Neptune). The key

physical characteristic that defines the boundary between these two classes is composition,
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not size. The abundance of volatile species relative to refractory species is much greater for

giant planets than terrestrial planets. This difference is attributed to differences in how the

planets formed. The giant planets formed in ∼10 Myr from protoplanetary disks with high

surface densities of volatile species, whereas the terrestrial planets formed in ∼100 Myr

from the accretion of refractory planetesimals (Lissauer, 1993; Boss, 2002).

Although recent observations of extrasolar planetary systems have drastically reshaped

ideas of planet formation, models still predict a bimodal distribution of volatile-rich planets

analogous to giant planets and refractory-rich planets analogous to terrestrial planets

(Reipurth et al., 2007). Since satellites are abundant in the solar system, we expect that

satellites are likely to be present around many extrasolar planets (as long as they have not

been lost due to tidal evolution; see Barnes and O’Brien (2002)). Several theories of satellite

formation have been proposed to explain the diverse satellites within the solar system,

including in situ formation in a protoplanetary disk, gravitational capture, atmospheric

capture, fission, and the impact between a planet and another body (Stevenson et al.,

1986).

While the basic mechanisms of satellite formation are still actively debated by

planetary scientists, certain trends are apparent. In particular, large, prograde satellites

orbiting in the equatorial plane of giant planets all seem to have formed in-situ within the

planet-forming sub-nebula (e.g. Canup and Ward, 2006). Highly inclined (even retrograde)

satellites around giant planets formed via a capture mechanism (Vokrouhlický et al., 2008;

Nesvorný and Vokrouhlický, 2009). Satellites of large solid planets are all consistent with

an impact origin (Canup and Asphaug, 2001; Canup, 2005). Some asteroid satellites formed

by fission (Scheeres, 2007). These mechanisms are candidates for how extrasolar satellites

form.

Prediction 1: Satellites that formed in the same place and at the same time as their
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parent planet exist only around planets analogous to giant planets.

This prediction results from the understanding that the formation of such primordial

satellites requires locally high surface densities of gas, ice or dust close to the growing planet.

They only form beyond the nebula’s snow line. These conditions occur in the protoplanetary

disks within which giant planets, but not terrestrial planets, form (Stevenson et al., 1986;

Boss, 2002). Thus if primordial satellites were found around a close-in planet with an

orbital semimajor axis inside its star’s snow line, the existence of the satellite would imply

that the planet formed further out and migrated inward rather than having formed in place.

The distinguishing characteristics of such satellites are: low eccentricity, prograde

orbits near the planet’s equatorial plane and well within the planet’s Hill sphere; same age

of formation as the parent planet; and elemental and isotopic compositions that, although

potentially modified by accretion and subsequent processes, are related to the environmental

conditions at the location and time of the formation of the parent planet.

Extrasolar planets with satellites that possess these characteristics are predicted to be

volatile-rich. That provides a constraint on relationships between the planet’s mass, density,

size, temperature and spectrum. They are also predicted to have formed rapidly within

a protoplanetary disk. Since their elemental and isotopic composition reflects conditions

where they formed, trends in these compositions can be used to determine spatial variations

in the protostellar nebula and to constrain planetary migration post-formation. Mapping

the distribution of such planets within a planetary system places constraints on the size

and duration of the protostellar nebula from which the star, planets and satellites formed.

If this prediction withstands scrutiny, then consideration of a stronger version may be

warranted. Specifically, that all planets that formed within protoplanetary disks originally

possessed primordial satellites. This would imply that if such a planet no longer possesses

primordial satellites, like Neptune, then they must have been removed somehow. The
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removal process is likely to have been a major event that affected the state and subsequent

evolution of the planet, such as a strong gravitational interaction with another planet or a

series of impacts.

If this prediction is disproven, then the presence of a protoplanetary disk during planet

formation is not a discriminant between volatile-rich giant planets and refractory-rich

terrestrial planets, which has substantial implications for planet formation.

Prediction 2: All satellites above a threshold mass around planets analogous to

terrestrial planets formed by the accretion of ejecta from an impact.

This prediction results from the elimination of other possible formation mechanisms.

Prediction 1 implies that planets analogous to terrestrial planets do not possess primordial

satellites. Capture of a body by a planet via any mechanism requires energy loss (Burns,

1992), which is impractical for bodies exceeding some threshold mass (Goldreich et al.,

2002) that we do not quantify in this work. It is difficult for a large solid body to accumulate

enough angular momentum to form satellites by fission without also accumulating so much

energy that it is catastrophically disrupted (Peale, 1986; Stern et al., 1997; Scheeres, 2007).

In addition, a rapidly rotating body is likely to lose angular momentum by shedding loose

material before approaching the threshold for fission (Richardson and Walsh, 2006). Only

mechanisms based upon satellite formation from impact ejecta remain viable.

The distinguishing characteristics of satellites formed from the accretion of impact

ejecta are (Hartmann et al., 1986; Stern et al., 1997; Canup and Righter, 2000): low

abundance of siderophile constituents relative to the parent planet; low relative abundance

of volatiles; large satellite to planet mass ratio; large ratio of the orbital angular momentum

of the satellite to the total angular momentum of the system; and isotopic composition

that, although potentially modified by subsequent processes, suggests a common origin for

the material in the planet and satellite.
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Extrasolar planets with satellites that possess these characteristics are predicted

to be refractory-rich. This provides a constraint on relationships between the planet’s

mass, density, size, temperature and spectrum. They are also predicted to have formed

slowly from the accretion of refractory planetesimals. Due to mixing of planetesimals, the

elemental and isotopic composition of such planets reflects conditions across a broad region

of the protostellar nebula. Mapping the distribution of such planets within a planetary

system places constraints on the size and duration of the protostellar nebula from which

the star, planets and satellites formed.

If this prediction withstands scrutiny, then consideration of a stronger version may

be warranted. Specifically, that all such satellites around a planet formed from a single

impact. This would imply that any large impact which produces a new satellite disrupts

any pre-existing satellites. The composition and dynamics of all of the planet’s satellites

would be linked by their common origin in a single impact event.

If this prediction is disproven, then either at least one seemingly impractical mechanism

for satellite formation must occur more easily than is currently thought or an unsuspected

mechanism for satellite formation exists. Either case has substantial implications for

satellite formation.

In order to better constrain the formation of extrasolar planets, we have made two

predictions concerning the formation of planetary satellites. Both are consistent with

current knowledge of the solar system. The first prediction has broad consequences for

how the current state of a planetary system can be used to constrain temporal and

spatial variations of conditions in the protostellar nebula within which the star, planets,

satellites and other components of the system formed. The second prediction highlights

the importance of stochastic impacts as a process that affects not only the geophysical and

geochemical states of the objects involved, but also the hierarchical structure of planetary
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systems.

A meaningful planetary classification scheme should be based on currently observable

characteristics, yet also be related to planetary formation and history. Planets in

the mass range 1M⊕ ≤ M ≤ 10M⊕ could either be “mini-Neptunes”, like GJ1214b

(Charbonneau et al., 2009) or “super-Earths” like CoRoT-7b (Léger et al., 2009). Future

discoveries of planets in this mass range are likely to blur the currently clear boundary

between terrestrial planets and giant planets. Consideration of a planet’s retinue of

satellites, particularly primordial satellites, may help fix the boundaries of planetary

classification schemes.
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