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ABSTRACT

The dynamics of the martian upper atmosphere are not well-understood. I have
identified the dominant tidal modes present in the upper atmosphere by comparing
density measurements from the aerobraking of the Mars Global Surveyor spacecraft
to predictions from classical tidal theory. Other observations and general circulation
models have also provided constraints. 1 have presented a justification for why
topography has a strong influence on the tides in the upper atmosphere. I have also
studied sol-to-sol variations in density at fixed altitude, latitude, longitude, season,
and time of day. I have developed a novel “Balanced Arch” technique to derive
pressures and temperature from these density measurements that also estimates
the zonal wind speed in the atmosphere. These are the first measurements of winds
in the martian upper atmosphere. This technique can also be applied to anticipated

data from Titan to measure winds in its upper atmosphere.

I have developed techniques to derive density, pressure, and temperature
profiles from entry accelerometer data, used them to investigate the entry of Mars
Pathfinder, and discovered that surprisingly accurate temperature profiles can be
derived without using any aerodynamic information at all. T have also investigated
techniques to derive atmospheric properties from the Doppler shift in telemetry
from a spacecraft during atmospheric entry and found that a surprisingly robust

estimate of temperature at peak acceleration can be derived.

I have discovered a network of tectonic ridges in the otherwise bland north-

ern plains of Mars and studied their implications for a possible ocean in that area.

I have tested the hypothesis that the formation of lunar crater Giordano
Bruno was witnessed in 1178 AD and rejected it due to the lack of any observations

of the immense meteor storm that must have followed the crater’s formation.



