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CHAPTER 10

SIMPLE CLIMATE MODELS

10.1 Abstract

Simple, one dimensional climate models are commonly used in the first studies of
a planet’s climate. While planets in our solar system are nowadays usually mod-
elled by general circulation models, simple climate models, which require minimal
observational constraints on the nature of an atmosphere, will be useful in studies

of extra-solar planets.

This Chapter has two distinct parts. In Section 10.2 I investigate a two-box
model of an atmosphere which uses a variational principle to predict heat transport
within the atmosphere. 1 derive an analytical expression that relates the efficiency
with which energy is radiated to space to that with which it is transported within
the atmosphere. This expression has a surprisingly simple form in most cases. It
can be used to make predictions which can then be compared with observations to
test the simple atmospheric model. 1 do not compare predictions with observations
because investigating the validity of the model is not the purpose of this work. This
work is an investigation of some properties of the previously proposed model, not a

test of the model.

In Section 10.3 I investigate three other simple climate models that have
been proposed in the literature and show that their predictions are almost identical
in most cases. This demonstrates that testing one of them is almost equivalent to
testing all of them and that it will be very difficult for other workers to prove that

one model is true and the other two are false.
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10.2 Two-Box Model

Lorenz et al. (2001) discussed a two-box model for climate controlled by a varia-
tional principle. Variational principles (e. g¢. the principle of least action in me-
chanics or Fermat’s principle of least time in optics) are a well-established part of
physics, though their discoveries are often serendipitious (Paltridge, 1975; Yourgrau
and Mandelstam, 1960).

The model of Lorenz et al. (2001) is shown in Figure 10.1. Energy balance

requires:

In this model, Iy and I; are assumed to be known from the planet’s orbital
properties and albedo. FE is assumed to be a known linear function of temperature.

F, Ty, and T} are unknowns to be solved for.

E1 — A —|— BTl

10.2.1 Variational Principle

The model currently has one fewer equations (10.1 and 10.2) than unknowns
(F,Ty,T1). The hypothesized variational principle provides the final constraint.
It is hypothesized that the rate of entropy production (F/Ty — F/Ty) within the
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Tropics Poles

T0 S T1

Figure 10.1: Simple two-box climate model. The boxes are of equal surface area,
the left (subscript “0”) corresponding to regions equatorward of 30° latitude and
the right (subscript “17) to regions poleward of 30° latitude. [ is absorbed solar
flux, E is outgoing thermal flux, and F' is the rate of latitudinal heat flow per unit

area. 1" 1s temperature.
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system 1s extremized subject to the energy balance constraints. The extremization

proceeds as follows:

d
o (FI Ty = F/Ty) =0

Using Equations 10.1, 10.2, and 10.3 this becomes:

0 (]O—A—BTO ]O—A—BTO)_O
aTy Ty To B
The sum of Equations 10.1 and 10.2 is:

o+ 6L =2A4 B(Ty +Th)

Using Equation 10.6 to eliminate 7, Equation 10.5 becomes:

6(%—A—B% m—A—B%)_O
oT \ BH=22 T, B

After differentiation, Equation 10.7 becomes:

-B Iy — A— BT, Ihy— A

Io+1; —2A 2 2
Lth=24 _Th (IO+I]13—2A _ TO) 15

=0
Using Equation 10.6 to reintroduce T, Equation 10.8 becomes:

-B Iyh,-A-BT, I,—A

=0
PR T R "

Using Equation 10.6 again to reintroduce [y, this becomes:

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)
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-B L—-A-BTY I,—-A

=0 10.10
T [T (10-10)
Rearranging:
h—-A L—-A
= 10.11
T¢ T? ( )
Solving for Tj:
]0 A 1/2
To="T 10.12
o (11 - A) (10-12)

This result can be used with Equation 10.6 to solve for Ty and T} using the
known Iy, I1, A, and B.

10.2.2 Solution for F

Simple climate models often try to predict F' and the following work investigates
this model’s predictions. F' is often parameterized as being proportional to the

temperature difference between the two boxes.

F=2D(Ty—T) (10.13)

D is a coefficient of heat transport, taken as an unknown to be solved
for. Predicting D is equivalent to predicting F'. The factor of two is included for

consistency with other models (Lorenz et al., 2001).

I use Equations 10.13 and 10.3 to replace F' and F; in Equations 10.1 and
10.2, then substitute the result of Equation 10.12 for 7 into Equations 10.1 and
10.2:
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]O_A 1/2 ]O_A 1/2
Iy —2DT —1)—A—BT = 10.14
° 1((11—/1) 1(11—/1) : (10.14)
I — A 1/2
I 4+ 2DT, (0 ) —1|—A—-BT} =0 (10.15)
L—A

Rearranged, Equation 10.14 becomes:

(lo—A) =T, (QD ((ﬁ - 3)1/2 - 1) + B (ﬁ = 3)1/2) (10.16)

Using Equation 10.16 to eliminate T} from Equation 10.15 shows that:

2D (I — A) (G(fii)m _ 1)
20 ((8=4)" - 1) + 5 (822)"
B (I, — A)

2D ((ﬁ%ﬁ)l/? . 1) + B (%)1/2

(I — A) + (10.17)

=0

Rearranging:

(I, — A)2D ((ﬁ = 3)1/2 _ 1) FB(Io— AL - A4 (10.18)

(Io— A)2D ((;3:3)1/2—1) “B(lo—A)=0

Rearranging to group together like terms:

2D ((Ip — A) + (I, — A)) ((2:3)1/2— 1) = (10.19)

B(Ily— A)1/2 ((]0 B A)1/2 (I - A)1/2)
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Multiplying by (I; — A)I/Q:
2D ((Io— A) + (h — A)) ((Io — A)'/* = (I, — A)'/?) = (10.20)
B(Io— A) (1 — A)2 (I, — A)'? = (1, = A)'?)

Finally solving for D:

2D (I — A)'* (1, — A)'?
BTG A A e

For the special case where Iy = I, Equation 10.21 states that 4D = B. If
Io=1-6/2and I = I 4+ 6/2, then Equation 10.21 becomes:

4D (I—A+68/2)""(1—A-6/2)""
- = T4 (10.22)

Rearranging:

% _ (1 _ 74(]5_2/1)2)1/2 (10.23)

As long as [ — A is not much smaller than 7, the value of this expression is

close to unity. If I use a linearized Stefan-Boltzman law for F. then:
—30T* + 40T?T; = E; (10.24)
A+ BT; = F;

Where T' is a characteristic temperature at the centre of the linear expan-

sion. If Ty and T are not too dissimilar from 7', then A ~ —3x E;. I— A is not much
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smaller than 7, in fact it is significantly larger than /. If F(7') is any polynomial
function of greater than first order that monotonically increases with T', then its
linearized form has A negative. This leads to a value for Equation 10.23 that is not
too far from unity. As an example, if A =0 and 6 = I, then Equation 10.23 has a

value of 0.87. Smaller values of 6 are closer to unity. To a reasonable approximation:

AD = B (10.25)

In investigating this simple climate model, I have discovered a conserved
quantity that has the same value in each box (Equation 10.11) and a relationship
between the coefficient of heat transport within the atmosphere (D) and the deriva-
tive of outgoing radiation flux with respect to temperature (B) (Equation 10.25).

These properties can be used to make predictions and test the model.

10.3 Other Simple Climate Models

In Section 10.3 I investigate three other simple climate models that have been pro-
posed in the literature (Paltridge, 1975; Rodgers, 1976; Lin, 1982). These three
models all use different variational principles to predict the annually-averaged vari-
ation of temperature with latitude. I show that their predictions are almost identical

in most cases.

Steady state, one dimensional climate models are generally of the form:

F(z) = I(z) — E(z) (10.26)

where x is the sine of latitude, F' is the meridional heat flux, [ is the
absorbed solar radiation, and F is the emitted thermal radiation. The effective

temperature, T', is defined by:
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E=oT* (10.27)

All temperatures discussed in Section 10.3 are effective temperatures, so |
have dropped the usual subscript-e for convenience. I depends on planetary orbital
parameters and Bond albedo and F or E is to be predicted by a climate model.

Energy balance requires that:

/_11 I(2) = E(2)dz = 0 (10.28)

In the trivial case where there is no heat transport, F(z) = I(z) and T'(z) is
easily predicted. In the trivial case where there is infinite ability to transport heat,

E(z) is constant and equal to the mean of I(x); T'(z) is again easily predicted.

I now introduce some useful notation:

fil ?J(l’)dl’
<Yy>="—"—r——" 10.29
Y [T da (10.29)
o fil y(z)dz
<y >= 5

10.3.1 Rodgers’s Model

Rodgers (1976), in response to Paltridge (1975), discussed a simple model in which

E(z) is that which extremizes:

v (z) — E(x)
/_1 ey (10.30)

Using the calculus of variations and the energy balance constraint of Equa-

tion 10.28, the solution to this model is given by (Arfken and Weber, 1995):
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?
= (I(@)/E(x) = 1 = M(2) + M(x)) = 0 (10.31)

Where A is a Lagrange multiplier. Performing the differentiation in Equa-

tion 10.31 shows that:

+A=0 (10.32)

The solution of Equation 10.32 for F(z) is:

(I(;))m = E(z) (10.33)

Substituting the result of Equation 10.33 into Equation 10.28 provides a

solution for A:

/_11 I(z)dz = /_11 (@)m dz (10.34)

Using Equation 10.29, Equation 10.34 becomes:

< IY? >

< I >= B

(10.35)

Using Equation 10.35 to eliminate A from Equation 10.33 gives the following

solution for F(z):
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10.3.2 Paltridge’s Model

Paltridge (1975) proposed a simple model in which 7'(z) is that which extremizes:

1 [(z) — oTx)
/_1 T (10.37)

Subject to the energy balance constraint of Equation 10.28. Using the

calculus of variations, the solution of Equation 10.37 is:

a% (7(z)/T(z) = oT(2)* = \(z) + \oT(z)*) = 0 (10.38)

Performing the differentiation in Equation 10.38 shows that:

_I($)—U z)? oT(z)° =
T(2)? 30T (x)* 4+ 4 T (x)° =0 (10.39)
Rearranging:
I(z) + 30T(:1:)4 = 4)\UT(;L’)5 (10.40)

Integrating Equation 10.40 and using Equation 10.28 to replace the o7
term, I find:

4<I>=4do<T° > (10.41)

Substituting this solution for A into Equation 10.40 shows that:
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<>
<7T5>

I(x) + 30T(:1:)4 =4 T(CL‘)5 (10.42)

I have not found a simple solution for 7'(z), so I leave the solution in this

form and move on.

10.3.3 Lin’s Model

Lin (1982) proposed a simple model in which the generation of available potential
energy is maximized. I adapt his model by replacing his use of surface temperature
with effective temperature. This makes it possible for his model to be compared
with those of Rodgers and Paltridge. In my adaption of Lin’s model T'(z) is that

which extremizes:

/1 (I(a) = oT(2)") (T(2)= < T >)da (10.43)

-1

Subject to the energy balance constraint of Equation 10.28.

Using the calculus of variations, the solution of Equation 10.43 is:

A (1)) = T 1) < T>) + (10.44)
a% (0 <T>T(x)" = M(z) + AoT(2)") =0

Performing the differentiation in Equation 10.44 shows that:

I(z) = 50T (z)' + 40 < T > T(z)’ + 4 aT(2)> =0 (10.45)
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Integrating Equation 10.45 and using Equation 10.28 to replace the o7
term, I find:

<I>-5<I>+40<T><T?> +4do <T°>=10 (10.46)

Rearranging:

o< T><T?>4d o <T?>=<1> (10.47)

Rearranging to solve for A:

A= ———— _<T> (10.48)

Substituting the solution for A from Equation 10.48 into Equation 10.45, 1
find:

I(z) = 50T(z)* + 40 < T > T(z)° — (10.49)
4oT(z)* < I >
4 T >T(x)? =
o<T>T(z)+ o< T3S 0
Rearranging:
4oT(z)* < I >
I(z) — 50T () 4 271 =0 (10.50)

o< T3>

I have not found a simple solution for 7'(z), so I leave the solution in this

form and move on.
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10.3.4 Restricted Solution

To investigate the similarity of this three models, I assume that 7(z) is symmetrical

about the equator and close to uniform:

I(x) =1y + azr? (10.51)

Where a/Iy < 1. This could be rewritten to use Legendre polynomials if
desired. The omission of a term linear in z is equivalent to assuming a circular orbit

and hemispherically symmetric albedo. Using Equation 10.51, < I > becomes:

1 1
<I>= 5/ Iy + ax’dz (10.52)
-1

I now find the solution for E(z) for each of the three models using this 7(z).

10.3.5 Restricted Solution to Rodgers’s Model

Equation 10.36 relates E(x) to I(z) in Rodgers’s model. To find F(z) using I(x)
from Equation 10.51, I first find 7(z)"/? and then < I'/2 >,

()2 = (Io+ aa”)""” (10.53)
2
I =1 1+ 2
(5’7) 0 + 21,
1 st ax?
1172 :—/ M2 g 10.54
Rl AU Ry K (10.54)

1 :11/2(1 i)
<Ie= 0 (14 61
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Substituting the results of Equations 10.53 and 10.54 into Equation 10.36
I find:

2 Iy + 2)
E(z) = 12 (1 + ﬂ) UL 10.55
(z) = Iy 27, ]5/2 (1+&) ( )
Rearranging:
Bla)= 1o (1422 <1+“)<1 “) (10.56)
x) = — — - )
’ 21, 31, 610
Rearranging:
E(z) =1 et e« (10.57)
B N T AR YA ‘
Rearranging:

(10.58)

10.3.6 Restricted Solution to Paltridge’s Model

Equation 10.42 is not a simple solution for F(z). Following the form of the restricted

solution to Rodgers’s model, Equation 10.58, I search for a solution of the form:

T(x) =Ty + bx* +c (10.59)

Where b/Ty < 1 and ¢/Ty < 1. Using Equation 10.59, I have:
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T(x)* = To* + 4b2* T3 + 4T} (10.60)

T(z)® =Ty’ + 5b2*Ty + 5Ty (10.61)
56T

<T°>=Ty" + ; O 4 5¢Ty (10.62)

Taking Equation 10.42 and substituting for 7(x) using Equation 10.51, for
< I > using Equation 10.52, for T'(z)* using Equation 10.60, for T'(z)® using Equa-
tion 10.61, and for < T > using Equation 10.62 I find:

Iy + az® + 30 (To* + 46215 + 4cT3) = (10.63)
To® + 5bx2T + 5T
4<]o‘|‘g) R
T05 —|— TO —|— 5(?1161
Rearranging:
Iy + ax® + 30 (To* + 46215 + 4cT3) = (10.64)
1+ 5ba? + 5c
(147 ) 2=
30/ 1+ T T,
Rearranging:
Iy + az® + 30Ty* + 12062 T 4+ 12015 = (10.65)

ar, (14 a +5b:1;2+5c 5b He
0 3, Ty T, 3Ty Ty
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Rearranging:
Io + az® + 30Ty* + 12062 T 4+ 12015 = (10.66)
4a 20[)1’2]0 206]0
41 + — —
3T 37,

Grouping together large and uniform terms, small and non-uniform terms,

and small and uniform terms, I have the following three equations:

]0 + 30'T04 = 4]0 (1067)
206221,

az? 1 1202?78 = 200 1o (10.68)

To

da  20b1,
120cT) = — — 10.69
70 =3 T 3T, (10.69)

Equation 10.67 shows that:

O'T04 = ]0 (1070)

Using the result of Equation 10.70 to eliminate [y from Equations 10.68
and 10.69, I have the following two equations:

az® + 120b2*Ty) = 200b2* T} (10.71)
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4 200bx%T3
120cT03 = 429 fe

10.72
3 3 (10.72)

Equation 10.71 shows that the solution for b is:

a/8 = obly (10.73)

Substituting the solution of Equation 10.73 for b into Equation 10.72, 1

have:

4a 20a a

1201y = 3T 3.3 3 (10.74)
ocly = @
24

Substituting the results of Equations 10.70, 10.73 and 10.74 into Equa-
tion 10.60 and multiplying by o, I have:

E(z) = O'T(.TL‘)4 =oTy' + 4abx2Tg’ + 4ach (10.75)
ar® a
FE =1 — 4 =
(2) o+ 5 + 6

This restricted solution for F(z) in Paltridge’s model is the same as in

Rodgers’s model (Equation 10.58).

10.3.7 Restricted Solution to Lin’s Model

Equation 10.50 is not a simple solution for F(z). Following the form of the restricted

solution to Rodgers’s model, Equation 10.58, I search for a solution of the form:



T(z)= To+ bx? + ¢

Where b/Ty < 1 and ¢/Ty < 1. Using Equation 10.76, I have:

T(;z:)4 =T,* + 461’2T§’ + 4cT§’

T(;z:)3 =T, + 3b$2T02 + BCTO2

< T? >=Ty + bT3 + 3Ty
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(10.76)

(10.77)

(10.78)

(10.79)

Taking Equation 10.50 and substituting for 7(x) using Equation 10.51, for

< I > using Equation 10.52, for T'(z)* using Equation 10.77, for T'(z)? using Equa-

tion 10.78, and for < T > using Equation 10.79 I find:

Iy + ax? — 5o (T04 + 4b;z:2Tg’ + 4CT§’) +
A (I a) To® + 3bx*T} + 3cT} 0
0 To® + bTZ + 3cT2

T3

Rearranging:

Iy + ax? — 50Tyt — 2006$2T03 — ZOUCTOS +

a1+ 4+ 2
FAEEALES =
BNV R I A2

(10.80)

(10.81)
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Rearranging:

Iy + ax® — 50Ty* — 200b2* Ty — 200¢T; + (10.82)
a 3bz? 3¢ b 3¢
4|1+ ——+ -+ -5 — 7 =0
0( +3]0+ To +To To To)
Rearranging:
Iy + azx® — 50Ty* — 200b2* Ty — 200¢T; + (10.83)

4a 1261’2]0 46]0

4] — =0
0-|-3—|- T T,

Grouping together large and uniform terms, small and non-uniform terms,

and small and uniform terms, I have the following three equations:

]0 —5O'T04—|—4]0 =0

(10.84)
O'T04 = ]0
126221,
az? — 200b2? TP + —— 0 = ¢ (10.85)
To
da  4bI
—200cTd + — — 0 = (10.86)
3 Ty

Using the result of Equation 10.84 to eliminate [y from Equations 10.85
and 10.86, I have the following two equations:

ar? — ZObeQTg’ + 1206$2T§’ =0 (10.87)

a/8 = obTy
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4
—200cTE + 3“ — 4oba®T3 = 0 (10.88)

Substituting the solution of Equation 10.87 for b into Equation 10.88, 1

have:

4a a

—200cTy + 3 30 (10.89)
5
Fa = 200cTy
ocly = =
24

Substituting the results of Equations 10.84, 10.87 and 10.90 into Equa-
tion 10.77 and multiplying by o, I have:

E(z) = O'T(:L’)4 = oTy* + 406:1;2T§’ + 4ach (10.90)
ar’® a
FE =1 — 4 =
(z) o+ 5 + 6

This restricted solution for £(z) in Lin’s model is the same as in Rodgers’s

model (Equation 10.58).

10.3.8 Restricted Solution to Zero and Infinite Heat Transport Models

In the limit in which there is no heat transport within the atmosphere, F(z) = I(x)
and Equation 10.51 shows that:

E(z)=1,+ azr? (10.91)
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In the limit in which there is infinite ability to transport heat within the
atmosphere, F(z) =< I > and Equation 10.52 shows that:

E(z) = Io+ % (10.92)

The mean of these two limits for E(x) is:

(10.93)

This expression for £(z) is also the same as the restricted solution for F(z)

in Rodgers’s model (Equation 10.58).

10.3.9 Conclusions

In the limit Iy + az?, where a/ly < 1, Rodgers’s, Paltridge’s, and Lin’s models all
have the same solution for E(x). This solution is also the mean of models with
zero and infinite ability to transport heat. I have not found the solutions of next
highest order in z* for F(xz) for the three models. T have not experimented with
numerical values in these equations to see how large the z* term in I(z) can be
before these three models make predictions for F(z) that differ by, say, 50%. Since
T(x) < E(x)'*, this corresponds to predictions for T'(z) that differ by only 10%. It
can be seen that these three models give very similar predictions for T'(x) for quite

large deviations of I(z) from being uniform in x.

Since these three models make nearly-identical predictions, testing one of
them is almost equivalent to testing all of them. It will be very difficult to prove

that one is true and the other two are false.



