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CHAPTER 6

SCIENTIFIC USES OF CRUDE TELEMETRY DURING
ATMOSPHERIC ENTRY

6.1 Abstract

Spacecraft entering an atmosphere often transmit information at a low data rate
about their health and activities during this high-risk phase of their mission. If
the spacecraft should catastrophically fail during the atmospheric entry, then this
telemetry is invaluable for determining what went wrong and preventing future mis-
sions from failing in that manner. Sometimes high priority scientific data collected
during the entry are also transmitted. In this Section I investigate what scientifically
useful information about the atmosphere can be deduced from the basic telemetry
signal. My goals are to recover some science from the mission in case of failure and
verify, at a crude level, the accuracy of any atmospheric measurements made during

the entry if these are later transmitted safely to Earth.

The motivation for this work comes from the failure of Mars Polar Lander,
which did not return any telemetry to Earth during its atmospheric entry, and from
the upcoming atmospheric entries (with telemetry) of NASA’s two Mars Explo-
ration Rovers in early 2004. I was also inspired by the problems of first measuring
the surface pressure of Mars and the proposal to send very crude, expendable atmo-
spheric probes to measure density, pressure, and temperature profiles whose results
would enable the design of the first landers (Seiff, 1963). This idea was not imple-
mented because early Mariner flybys measured the surface pressure at about the

same time that earth-based observations reached a consensus. (Snyder and Moroz,
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1992).

I do not analyse any data contained in the telemetry. I use only the Doppler-
shifted received telemetry frequency, which depends on the speed of the spacecraft,

to determine the spacecraft’s trajectory and the atmosphere’s properties.

In Section 6.2 I calculate the acceleration, velocity, and position of a space-
craft during atmospheric entry. In Section 6.3 I derive atmospheric properties from
the spacecraft’s trajectory. In Sections 6.4 —6.7 T apply my results to a hypotheti-
cal atmospheric entry to see how useful any of my techniques are in any practical

applications.

6.2 Deriving Acceleration, Velocity, and Position

I first consider the dynamics of a spacecraft entering an atmosphere. For simplicity
[ assume a vertical entry into a non-rotating atmosphere where the only force acting

on the spacecraft is aerodynamic drag:

pODUQA

m

vV=a= (6.2)

Where z is altitude, v is speed (positive), a is © (negative), p is atmospheric
density, Cp is the spacecraft’s drag coefficient, A is the spacecraft’s projected area,
and m is the spacecraft’s mass. An overdot indicates differentiation with respect to
time. I have neglected the effects of gravity for simplicity. They are often smaller
than those of drag and can easily be reintroduced into the formalism if desired.
Assuming that the spacecraft’s attitude is stable, C'p is a known function of the

atmospheric composition (assumed known and uniform), v, p, and the atmospheric
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temperature. Its value is usually close to 2. A and m are assumed to be known
and constant during the atmospheric entry. p is not known. These equations are

discussed in Magalhaes et al. (1999).

I assume that, from analysis of the Doppler-shifted received frequency of
the telemetry, v is known at equally-spaced points in time and that v changes at
most linearly with ¢ between these time points. The time interval is A. T label
quantities corresponding to the nth time point with a subscript-n. zg and v (at the
start of the atmospheric entry) are known very accurately from spacecraft tracking

during its cruise phase.

[ assume that each measurement of v has the same random error, o, except

for vg which is much better known. The validity of this assumption is discussed later.

Since v changes linearly with ¢:

(L= tn)

< (6.3)

v(t) = v, + (Vg1 — vn)

This is valid between ¢, and ¢,,.;. Using Equations 6.1 and 6.3, z,41 can

be found in terms of z,,:
tnt1
el = 2n — / v () dt (6.4)
tn

(L —tn)

tn 1
fir = 2= [ vn+ (Dngr = ) dt (6.5)
tn

A 1
Zn4+1 = Zn — / Uy + ('Un+1 — Un) —dt (66)
0 A
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_ A2
ot = 2n — UR A\ — (Wn41 — va) A” (6.7)

(Un—}—l —I' 'Un)

A (6.8)

Zn+1l = Rn —

Since zg 1s known, all z, can be found in this way.

I calculate uncertainties for all of the quantities that I derive. I use exten-

sively the following relationship, which is valid for independent, random errors:

f=r(zy,...) (6.9)

(o) = (g_i%)z + (g—]yfay)Q S (6.10)

The uncertainty in z,4q is:

2 A2

AZO.Z
T (6.12)

_ 2% (6.13)
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Since @ is constant between time points, it must change discontinuously
at each time point. This makes finding a,4; challenging. T could use the average
of the easily calculated a during the preceding and subsequent time intervals, but
this would make a,; dependent on v,,5 and earlier v. This does not seem like
the most appropriate way of proceeding. Instead, I look at values of a, v, and z
halfway between ¢,, and ¢,,. This time is {,41/2. @ny1/2, Vng1/2, and 2,45 can all

be defined in terms of v, and earlier v.

Since a is assumed constant during each A time interval:

Upprjr = 22— 0n (6.14)

o2

Cappryy = A (6.15)
And:
Vpgryg = ot +2””+1 (6.16)
Oy
Jvn+1/2 = 75 (617)
Zp41/2 18 slightly more complicated to find:
tny1/2
fsy = = | ) dt (6.18)
tnt1/2 t—1,
Zpt1)2 = Zn — Vn + (Vg1 — n) ( )dt (6.19)

tn A



Zn43/2"

Af2 td
n = Zn — n n — vy) ——dl
Znp1j2 = % /0 Vn + (Vng1 v)A

VA (Vpg1 — v) A?

Zn—l—l/? =Zn — 9 A 3

P - é(gvn —I' vn—}—l)
n+1/2 — #n 2 4

2.2

9 o SA%o
O-Zn12_0-2"—|_

+1/ 32
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(6.20)

(6.21)

(6.22)

(6.23)

It is later useful to know 2,43/ — 2,,41/2, so I first use Equation 6.22 to find

A (3vn+l —I' vn—}—?)
Zn43/2 = Zn+l T 5

2 4

Using Equation 6.8:

(vn+1 —I' vn)A _ é (3vn+1 —I' vn+2)

Zn+3/2 = Zn —

2 2 4

SA (4vn+1 —I' 4vn —I' 3vn+1 —I' vn+2)

Zn43/2 = Zn T 9 12

P - % (4vn —I' 7rU'rL—}—l —I' vn—}—?)
n+3/2 — “n 2 12

(6.24)

(6.25)

(6.26)

(6.27)
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Using Equation 6.22 to compare this to z,44/s:

3A (3, + vpg1)
= g, — 22 1Un T Unit) 2
Zn-l—l/? z 2 12 (6 8)

I find that:

Un, —I' 6'Un—l—l —I' vn—I—Z)

Zn43/2 T Fnt1/2 = A

6.29
3 (6.29)
2 A? 2 2 2
enpap=znp1y 64 (Jv + 360, + Jv) (6.30)
AQ
2 _ 2
O-Zn+3/2_2n+1/2 - 3_2 (190-11) (631)

6.3 Deriving Atmospheric Properties

Useful atmospheric properties that can be obtained from these data include ver-
tical profiles of density, pressure, and temperature. There is more than one way
to calculate atmospheric properties from measurements of v. Different techniques
involve different approximations. An approximate technique may be better than a
formally correct technique if the uncertainty on the formally correct estimate of,
say, temperature is many times greater than that on the approximate estimate. |

shall outline several techniques and then investigate which of them are most useful.

I shall outline one technique for deriving atmospheric density, three tech-
niques for atmospheric pressure, and four for atmospheric temperature. 1 shall
use a variety of superscripts to distinguish pressures and temperatures derived by

different techniques. All uncertainty calculations are discussed in Appendix F.
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6.3.1 First Technique for Density

Rearranging Equation 6.2, I find that:

—a m

If Cp is known, then Equation 6.32 can be solved to give the value of p at
each 1,1,/5. Since z is also known at these times from Equation 6.22, I have p as a

function of z.

—Apy1/2 M
n = = 6.33
Pt = mr L, OpA (6.33)
Using Equations 6.14 and 6.16:
n — Un 4
Ont1 = On T (6.34)

pn+1/2 a (vn + vn+1)2 AACD
6.3.2 First Technique for Pressure

In the usual manner, this density profile can be converted into a pressure profile
using hydrostatic equilibrium. A temperature profile can then be obtained using an
equation of state and the density and pressure profiles. To distinguish the results

of this technique from later ones, I label pressures calculated using this technique

by p*.

p= /—pgdz (6.35)
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Where p is pressure and g is the planet’s acceleration due to gravity. Rather
than using a complicated upper boundary condition, I set py equal to zero. This does
not affect results in the lower atmosphere and, as I shall show later, uncertainties
in the upper atmosphere are large enough that they prevent any useful estimate of

po from the density scale height.

P:L-H = Py + Prti1/29 (Zn — Znt1) (6.36)

pPn+1/2 can be calculated from Equation 6.34 and z, — 2,4, can be calculated

from Equation 6.8.

6.3.3 First Technique for Temperature

To distinguish the results of this technique from later ones, I label temperatures
calculated using this technique by T™*. Atmospheric temperature is given by the

ideal gas equation of state:

. pMmol

T
pkp

(6.37)

Where M,,,; is the mean molecular mass of the atmosphere (assumed
known), and kg is Boltzmann’s constant. Unfortunately, I have calculated above

p, and p,iq1/2. A reasonable estimate for p, is the geometric mean of p,_;/, and

Pn+1/2:

/’EL = Pn—1/2Pn+1/2 (6.38)

prn—1/2 and p,1q/2 can be calculated from Equation 6.34. This is correct in
the case when v stays constant between ,_y/, and 1,41/, and the atmosphere is

isothermal between z,_1/, and z,41 /2.
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Mmol @

T =
kB Pn

T

(6.39)
p: can be calculated from Equation 6.36 and p, can be calculated from

Equation 6.38.

6.3.4 Second Technique for Temperature

Another technique can also be used. I label temperatures calculated using this
technique by T® to distinguish them from those of Section 6.3.3. For an isothermal
atmosphere in hydrostatic equilibrium, p (z) can be related to atmospheric temper-

ature, T"

Mg dz

T= il T 6.40
kg dlnp ( )
7@ _ — mold — “n+1/2 = Rn-1/2 6.41
" kg In Prnt+1/2 — In Pn-1/2 ( )

_Mmo n — An-—
= — 19 Znt1/2 — Fn-1/2 (6.42)

B In (Pn+1/2)

Pn—1/2
Using Equation 6.29:
Mmo n— 6 n n

78 = Mnotg \ (On-1 & 600 + Ons1) (6.43)

n kg In <Pn+1/2)

Pn—1/2
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As long as C'p does not change significantly between 4,,_y/, and ¢,11/,, the

ratio of densities can be calculated without it. Using Equation 6.34:

Pn+1/2 _ Un4+1 — Up (vn—l + vn)Q (6 44)
P12 (v, + vn+1)2 Up — Up—1 '
Mmo n— 6 n n
76 = Mmog \ _ (Uno1 & 60n & Onin) (6.45)

T She i (e, Catl)

Un+Un+l)2 Un—VUn—1
6.3.5 Second Technique for Pressure

I label pressures calculated in this section as p®. To find the pressure from the
density and temperature, I use the ideal gas equation of state and p, from Equa-

tion 6.38:

kg

mol

p?’@b = pnTn@ (6.46)
T® can be calculated using Equation 6.45 and p, can be calculated from

Equation 6.38.

6.3.6 Third Technique for Temperature

If the acceleration is constant between three, not just two, time points, then Equa-
tion 6.45 for T'® can be simplified. T label this calculation of T as T#. Using

Vp_1 = v, + 6 and v,41 = v, — 6, Equation 6.45 gives:

T# _ MmolgA 8Un

T Bk (gt el

2up—6)7 =6

(6.47)
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T¥ = ks 2In Gfgﬁg:) (6.48)

LF = M;Z;flg/ 21n(1v+n 5/0n) (6.49)

T# = M]::lg ;i (6.50)

7# = Mnagh v, (6.51)
n kB Up_1— Upa1

Uncertainties for this derivation of temperature are small, but there are

only restricted circumstances in which it can be used.

6.3.7 Third Technique for Pressure

There is yet another approach to finding atmospheric properties. v and z are better
known than a, since a involves taking the difference of two large, inaccurate num-
bers. I label pressures calculated by this technique p#. Dividing Equation 6.1 by
Equation 6.2 gives:

dv  pCpAv

B .52

dz m (6:52)
/d—” _ [r9Cod, (6.53)

v mg
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If T assume that Cp is constant, then by hydrostatic equilibrium:

v _ CDA/dp (6.54)

o (22) = =008 (4 1) (6.5
—mg vy,

(v —po) = oo < ) (6.56)

This formula for p, unlike Equation 6.34 for p, does not depend on the dif-
ference between two velocities. p, is unknown, but if I use the top of the atmosphere
as a boundary condition, where v, = vg is known accurately and p, is small, then

its actual value is irrelevant for values of p lower in the atmosphere.

6.3.8 Fourth Technique for Temperature

I label temperatures calculated by this technique 7%. Similarly to before, assuming

an isothermal atmosphere gives:

dz
T8 = “mold 6.57
kg d(Inp#) (6.57)
Mmolg Zn — Zn41
T$ 6.58
nt1/2 = kg lnpfﬂ _ lnp# ( )

Using Equation 6.8:
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Al’molgA Un, —I' Un+1
5, .., = 6.59
n+1/2 QkB n <p#+1) ( )
34

p# can be calculated from Equation 6.56.

6.3.9 Summary

The techniques in Sections 6.3.1 — 6.3.6 are closely related to the traditional method
of entry accelerometer data analysis practised by Seiff and colleagues. 1 have not
come across the techniques in Sections 6.3.7 — 6.3.8 in the literature of this discipline.
Treating Cp as constant is a source of error that I have not considered in the formal
uncertainty analysis. Figure 3 of Magalhaes et al. (1999) shows how Cp changed
during Pathfinder’s descent. However, if there are other large sources of error, this
incorrect assumption may be justified. Cp changes by at most 25% over the entire
descent of Pathfinder, so densities derived with this assumption are only incorrect
by 25% due to this assumption. With changes in density of 8 orders of magnitude,
that is not necessarily a major problem. Pressures are in error by a similar amount.
The error in density is due to errors in C'p at that instant. However, the errors
in pressure are proportional to accumulated errors in C'p over the previous 2 scale
heights or so. Densities are directly proportional to C'p, so estimates of the ratio of
two densities are not affected by this error as long as Cp does not change greatly
between the two points of interest. Estimates of the ratio of two pressures are
similarly robust, as are temperatures estimated from the ratio of a pressure and a

density measurement.

6.4 Uncertainties in Transmitted Frequency

In the special case in which the line of sight between spacecraft and receiver is

parallel to the vertical trajectory of the spacecraft, v is related to the received and



transmitted frequencies as follows:

E . ftrans - frec _ 1

frec
ftrans

C—vV=C¢C

frec

& ftrans ftrans
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(6.60)

(6.61)

Where ¢ is the speed of light, fi..ns 1s the transmitted frequency and f,.. is

the received frequency. ¢ is known exactly, and f,.. is known much more accurately

than ftrans .

O-C_U _ O-.ftrans

cC—0 B ftrans

O-ftrans

Ce—y = Oy = (C—U)T
rans

fTeC O-ftra'ns

=C _
ftrans ftrans

Oy

Since v < ¢ in Equation 6.61:

O-ftrans

Ty =C—F/———
Y ftrans

(6.62)

(6.63)

(6.64)

(6.65)

Sam Thurman of JPL has also considered this problem. He sent me some

information on the uncertainties in transmitted frequency for Mars Pathfinder (per-

sonal communication, 2002). The nominal transmission frequency was about 8.4
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GHz. The free-fall drift rate of the oscillator, measured prior to entry, was a few
tenths of Hz per second. Extrapolated through the three hundred second atmo-
spheric entry this causes a frequency drift of about 100 Hz. The oscillator frequency
is very sensitive to acceleration. Thurman modelled this as a quadratic in g with
coefficients of 10 Hz g~ and 5 Hz g=2. In the worst case in which these two terms
both cause frequency shifts in the same direction, this effect causes a frequency shift
of 600 Hz at maximum acceleration of 10 g. Random noise levels prior to parachute
opening were modelled as 3 Hz. This increased to 50 Hz after parachute opening.
Parachute opening caused an instantaneous 250 Hz shift in frequency. In this work
I am only interested in behaviour prior to parachute opening and find it simplest
to model oy, .. as random noise. [ use oy, ./ firans = 1077, This is slightly larger
than Thurman’s modelling of the systematic drift which dominates oy, ... Assum-
ing that oy, ... 1s random noise allows me to use the equations above. If I assumed a

systematic drift, then a more complicated treatment of the errors would be needed.

6.5 Simulated Trajectory and Atmospheric Properties

To see how useful all of this is, I need to use some realistic numbers. I chose those
of Mars Pathfinder: m = 500 kg and A = 5 m?. The martian atmosphere has
M, = 44 x 1.67 x 10727 kg and g = 3.7 m s=2. Of course, kg = 1.38 x 1072 J
K1,

I use a vertical atmospheric entry from 120 km altitude to the surface. For
simplicity [ allow my spacecraft to impact the surface at high speed without braking
with parachutes or rockets. I assume a vertical entry speed of 2 km s™', which is the
same as Pathfinder’s vertical component of velocity. Pathfinder’s actual speed was
faster, but on a shallower flight path. I assume that C'p = 2 under all conditions.
The atmosphere is isothermal at 200 K, with a surface density of 1072 kg m™> and
a scale height of 10 km.

I first calculate v, z, a, p, p, and T that are actually experienced during
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the simulated descent as functions of ¢. @ is known from Equation 6.2, v from
integrating Equation 6.2, and z from integrating Equation 6.1. 1 use a simple
first-order integration routine with a timestep of 1 s. Using shorter timesteps did
not change the derived trajectory. 7' is always 200 K. p is found from integrating
Equation 6.40 and p is found from Equation 6.37. z, v, a, p, and p are plotted as
functions of ¢ in Figures 6.1 — 6.5.
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Figure 6.1: Altitude versus time for the simulated atmospheric entry
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Figure 6.2: Speed versus time for the simulated atmospheric entry
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Figure 6.3: Acceleration versus time for the simulated atmospheric entry
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Figure 6.4: Density versus time for the simulated atmospheric entry
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The total flight time is about 70 — 80 seconds. This is much shorter than
Pathfinder’s 300 s descent because of Pathfinder’s shallower flight path. T chose
A to be 4 s. In reality telemetry is continuous, not intermittent. In that case
signals within a certain time interval are averaged to reduce their random noise
level. The time interval should be long enough to usefully reduce the noise and
short enough that atmospheric properties are not changing too much during it.
Since I am representing a systematic drift as a random noise in order to get an idea
1

for what’s going on, I cannot average to reduce the noise level. 4 s at 2 km s~

corresponds to travelling nearly an atmospheric scale height.

6.6 Derived Trajectory and Atmospheric Properties Using Clean v

First, I calculated z, v, a, p, p, and T from my various techniques using the simulated
values of v with the specified o, of ¢/107. With this approach, calculated quantities
should be close to their simulated values and the uncertainties should be somewhat

realistic. Afterwards I use noisy values of v to calculate all these quantities.

Figures 6.6 — 6.19 show z,, Zn41/2> Uns Ung1/2 Gng1/2; Pnt1/25 Prs Prs pn@,
p#, Tx, TC, T#, and T*

T, T7, nt1/2 A functions of . Uncertainties for each quantitity are

plotted, as are the simulated values experienced during entry.

Both z, and 2,412 (Figures 6.6 and 6.7) have uncertainties smaller than the
size of the symbols. v,,41/2 (Figure 6.9) has uncertainties smaller than the size of the
symbols. a@,11/2 (Figure 6.10) has large uncertainties. This suggests that quantities
derived from a,1,/, are uncertain. p,4q/o (Figure 6.11) only has small uncertainties
after t = 40 s. p, (Figure 6.12) only has small uncertainties between ¢ = 45 s and
70 s. p: (Figure 6.13) only has small uncertainties after t = 40 s. p® (Figure 6.14)
never has small uncertainties. p# (Figure 6.15) only has small uncertainties after
t =40 s. T (Figure 6.16) only has uncertainties of less than 100 K between ¢ = 50
s and 60 s. T (Figure 6.17) is similar. T# (Figure 6.18) is interesting. This

temperature measurement is only valid when «a is constant during two consecutive
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time intervals. This corresponds to the peak in Figure 6.10. If this peak can be
accurately located in the data, then one good temperature measurement with small
uncertainties can be made. In this case, it is at about ¢ = 55 s. Using simulated
(not noisy) v gives a very good measurement of the temperature at this point. |
shall later investigate how good the measurement is using noisy v data. T

n+1/2
(Figure 6.19) has uncertainties of less than 100 K after ¢ = 40 s.

p: and p# have smaller uncertainties than p®. T has smaller uncer-

n+1/2
tainties than 7% and 7'®. T# may give one and only one accurate temperature

measurement during descent at the time of maximum acceleration.
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Figure 6.6: z, (crosses) and o,, (vertical lines) versus time calculated using sim-
ulated v. Continuous curve is simulated z versus ¢ experienced during the atmo-
spheric entry.
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Figure 6.7: z,11/, (crosses) and O oin 2 (vertical lines) versus time calculated us-
ing simulated v. Continuous curve is simulated z versus ¢ experienced during the
atmospheric entry.
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Figure 6.8: v, (crosses) and o,, (vertical lines) versus time calculated using sim-
ulated v. Continuous curve is simulated v versus ¢ experienced during the atmo-
spheric entry.
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Figure 6.9: v,11/, (crosses) and Tt o (vertical lines) versus time calculated us-
ing simulated v. Continuous curve is simulated v versus ¢ experienced during the
atmospheric entry.
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Figure 6.10: a,11/, (crosses) and Ty (vertical lines) versus time calculated us-
ing simulated v. Continuous curve is simulated a versus ¢ experienced during the
atmospheric entry.
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Figure 6.12: p, (crosses) and o, (vertical lines) versus time calculated using sim-
ulated v. If p, — o, is negative, then only one side of the error bar is plotted.
Continuous curve is simulated p versus ¢ experienced during the atmospheric entry.
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Figure 6.13: p} (crosses) and o, (vertical lines) versus time calculated using sim-
ulated v. If p; — o, is negative, then only one side of the error bar is plotted.
Continuous curve is simulated p versus ¢ experienced during the atmospheric entry.
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Figure 6.14: p)! (crosses) and 0,0 (vertical lines) versus time calculated using sim-
ulated v. If p® — o,e is negative, then only one side of the error bar is plotted.
Continuous curve is simulated p versus ¢ experienced during the atmospheric entry.



260

1 OO0.000 T T T T T T T T T T T T

T T T T
[

100.000

oo
|

10.000

Ty
|

1.000

T
|

Pressure (Pa)

0.100

T
I
Lol

0.010

AR
Lol

O-OO1 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1

40 60
Time since entry (s)

o
N
o
(@)
o

Figure 6.15: p# (crosses) and o,# (vertical lines) versus time calculated using sim-

ulated v. If p# — o, is negative, then only one side of the error bar is plotted.
Continuous curve is simulated p versus ¢ experienced during the atmospheric entry.



261

500F T 171 T T T ]
400 - .
__300F ]
< :
o - 1
= ; ]
© 200F AN s I A O
o r 4 T ]
o r 1
& T ]
S |
100 * T %
oF +-
'1 OO g | I | | | | | | | | | | | ]

0 20 40 60 80

Time since entry (s)

Figure 6.16: 7" (crosses) and o7s (vertical lines) versus time calculated using sim-
ulated v. Simulated T during the atmospheric entry is 200 K.
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Figure 6.17: T, (crosses) and ora (vertical lines) versus time calculated using
simulated v. Simulated T' during the atmospheric entry is 200 K.



263

500 T T T T T T T T T T T T

400

300

200

Temperature (K)

100

o b b b b by

LIS L L L L L L L L

'100 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1

40 60
Time since entry (s)

o
N
o
(@)
o

Figure 6.18: T7# (crosses) and o,4# (vertical lines) versus time calculated using
simulated v. Simulated T during the atmospheric entry is 200 K.
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Figure 6.19: Tj+1/2 (

crosses) and o5  (vertical lines) versus time calculated using
n+1/2
simulated v. Simulated T during the atmospheric entry is 200 K.
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6.7 Derived Trajectory and Atmospheric Properties Using Noisy v

Next I added random noise corresponding to o, to the v, derived at each time point
from the telemetry. I used the noisy v, and o, to calculate z,v,a, p,p, and T from
my various techniques. This is the closest analogy to actual practical application

of these techniques on real data.

Figures 6.20 — 6.33 show z,, Zn41/25 Uns Ung1/25 Gng1)2s Prt1/2s Prs Ps pn@,
n n

p#* T, TC, T# and T$_|_1/2 as functions of ¢. Uncertainties for each quantitity are

plotted, as are the simulated values experienced during entry.

Both z, and z,41/2 (Figures 6.20 and 6.21) are accurately derived and
have uncertainties smaller than the size of the symbols. v,11/, (Figure 6.23) is
accurately derived and has small uncertainties. a,41/2 (Figure 6.24) is not very
accurately derived and has large uncertainties. However, the peak is quite well
identified and this bodes well for the one useful result of T'¥. pn+1/2 (Figure 6.25) is
accurately derived after t = 45 s. p,, (Figure 6.26) is accurately derived, with larger
uncertainties, between ¢t = 45 s and 65 s. p’ (Figure 6.27) is accurately derived with
small uncertainties after ¢ = 45 s. p® (Figure 6.28) has such large uncertainties as
to be useless. p# (Figure 6.29) is accurately derived with small uncertainties after
t =45 s. T (Figure 6.30) has uncertainties of about 100 K between ¢ = 45 s and
65 s. The temperature values in this time range are clearly centred on the correct
200 K result, so averaging them would improve the temperature measurement at
the cost of vertical resolution. T (Figure 6.31) is useless. All values of T# that
appear in Figure 6.32 have small uncertainties. However, only the measurement
closest to the peak in acceleration is correct. If that peak can be identified well,
then T# provides one correct temperature measurement with a small uncertainty.
In this example, the peak is clear and the Tgﬁs measurement of about 200 K is
easily selected. By repeating this work for different noisy values of v, I find that the
peak in acceleration is almost always clear enough to narrow down the useful T'#

measurement to at most two possibilities. TS Figure 6.33) has uncertainties

+1/2 (
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of less than 100 K between ¢ = 45 s and 65 s. The temperature values in this
time range are clearly centred on the correct 200 K result, so averaging them would

improve the temperature measurement at the cost of vertical resolution.

The spacecraft’s position as a function of time can be derived quite well
using the techniques presented here. Correct values of atmospheric densities and
pressures after 45 s (below 30 km) can be accurately derived with small uncertain-
ties. Atmospheric temperatures can be accurately measured at the point of peak
acceleration if that peak can be accurately identified. Tjﬂ/2 is the most useful of
the other techniques for measuring temperature. By reformulating the problem to

eliminate poorly-constrained differences in speed, the uncertainties are reduced.
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Figure 6.20: z, (crosses) and o, (vertical lines) versus time calculated using noisy
v. Continuous curve is simulated z versus ¢ experienced during the atmospheric
entry.
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Figure 6.21: z,41/, (crosses) and O oir 2 (vertical lines) versus time calculated using
noisy v. Continuous curve is simulated z versus ¢ experienced during the atmo-
spheric entry.



269

2000 T T

1500 -

ms™)

= 1000

Spee

500 -

0 20 40 60 80
Time since entry (s)

Figure 6.22: v,, (crosses) and o,, (vertical lines) versus time calculated using noisy
v. Continuous curve is simulated v versus ¢ experienced during the atmospheric
entry.
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Figure 6.23: v, 41/7 (crosses) and Tt o (vertical lines) versus time calculated using
noisy v. Continuous curve is simulated v versus ¢ experienced during the atmo-
spheric entry.
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Figure 6.24: a,,11/, (crosses) and Ty (vertical lines) versus time calculated using
noisy v. Continuous curve is simulated a versus ¢ experienced during the atmo-
spheric entry.



272

10-1 T T T T T T T T T T T T
1072} -
1073} -
e 4 J[
o 107 F T l + ]
33
=
@ 1070 y, -
@
()]
107 -
1077 L -
10-8 A T S S B
0 20 40 60 80

Time since entry (s)

Figure 6.25: pp11/2 (crosses) and o, ., (vertical lines) versus time calculated using
noisy v. If ppy1/0 — 0y, ,, is negative, then only one side of the error bar is plotted.
Continuous curve is simulated p versus ¢ experienced during the atmospheric entry.
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Figure 6.26: p,, (crosses) and o, (vertical lines) versus time calculated using noisy
v. If p, —0,, 1s negative, then only one side of the error bar is plotted. Continuous
curve is simulated p versus ¢ experienced during the atmospheric entry.
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Figure 6.27: p} (crosses) and o,. (vertical lines) versus time calculated using noisy
v. If p;, — o,» is negative, then only one side of the error bar is plotted. Continuous
curve is simulated p versus t experienced during the atmospheric entry.
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Figure 6.28: p? (crosses) and o, (vertical lines) versus time calculated using noisy
v. If p¢ — o,e is negative, then only one side of the error bar is plotted. Continuous
curve is simulated p versus ¢ experienced during the atmospheric entry.
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Figure 6.29: p# (crosses) and o,# (vertical lines) versus time calculated using noisy

v. If p# — o, is negative, then only one side of the error bar is plotted. Continuous
curve is simulated p versus t experienced during the atmospheric entry.
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Figure 6.30: T (crosses) and orx (vertical lines) versus time calculated using noisy
v. Simulated T" during the atmospheric entry is 200 K.
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Figure 6.31: T, (crosses) and o7a (vertical lines) versus time calculated using noisy
v. Simulated T" during the atmospheric entry is 200 K.
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Figure 6.32: T'# (crosses) and o (vertical lines) versus time calculated using noisy
v. Simulated T" during the atmospheric entry is 200 K.
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crosses) and o5  (vertical lines) versus time calculated using
nt1/2
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6.8 Conclusions

Several different techniques for measuring atmospheric properties during entry from
telemetry have been compared. Some, such as p*, p#, T*, T# and T*, appear useful.
When trying to measure and analyse small changes in noisy data, it is clear that

great care must be taken to select the best approach.

Two assumptions that I have made deserve further discussion. Firstly, 1
have assumed that the measured v are dominated by random noise when they are
actually dominated by systematic errors due to the transmitter being very sensitive
to acceleration. Uncertainties in derived quantities are not too greatly affected by
this, but the values of the derived quantities are. Small differences in speed, which
are interpreted as accelerations, could be dominated by frequency drift. The 7'
technique is least affected by this. To quantify whether this renders some of my
techniques useless, I would have to see how a prescribed frequency drift affects
my calculations of z,a,p,p, and T. Secondly, 1 have often assumed a constant
value of C'p. In Chapter 5 I have shown that this assumption is useful. Where |
have calculated densities or pressures using this assumption, an extra uncertainty
of 25% should be incorporated. Where I have calculated temperatures using this

assumption, the extra uncertainty is much smaller (~ 10%).

My simplified geometry and neglect of gravity on the spacecraft’s trajectory
are useful for describing the techniques, but are not difficult to incorporate into a real
analysis tool. How useful might these techniques be in practice? Clearly this work
can be performed much more accurately using onboard accelerometers, but these
techniques should give reasonable trajectories. The derived atmospheric properties
have such large uncertainties that they are only likely to be useful either if the
planet’s atmosphere has not been well studied before or if there is public or political
interest in poor quality results from an otherwise failed mission. An over-riding
problem is the separation of changes in frequency due to drift and due to the Doppler

shift. Time intervals may need to be increased such that the change in frequency
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due to the change in speed during the extended time interval is comfortably greater

than the likely drift in frequency.



