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CHAPTER 5

ANALYSIS OF ENTRY ACCELEROMETER DATA

5.1 Abstract

Accelerometers are regularly flown on atmosphere-entering spacecraft. Using their
measurements, the spacecraft’s trajectory and the vertical structure of density, pres-
sure, and temperature in the atmosphere through which it descends can be calcu-
lated. T review the general procedures for trajectory and atmospheric structure
reconstruction and outline them here in detail. I discuss which physical proper-
ties are important in atmospheric entry instead of working exclusively with the
dimensionless numbers of fluid dynamics. Integrations of the equations of motion
governing the spacecraft trajectory are carried out in a novel and general formula-
tion. This does not require an axisymmetric gravitational field or many of the other
assumptions that are present in the literature. I discuss four techniques — head-on,
drag-only, acceleration ratios, and gyroscopes — for constraining spacecraft atti-
tude, which is the critical issue in the reconstructions. The head-on technique uses
an approximate magnitude and direction for the aerodynamic acceleration, whereas
the drag-only technique uses the correct magnitude and an approximate direction.
The acceleration ratios technique uses the correct magnitude and an indirect way
of finding the correct direction, and the gyroscopes technique uses the correct mag-
nitude and a direct way of finding the correct direction. The head-on and drag-only
techniques are easy to implement and require little additional information. The
acceleration ratios technique requires extensive and expensive aerodynamic mod-
elling and the gyroscopes technique requires additional onboard instrumentation.

The effects of errors are briefly addressed. My implementations of these trajectory
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reconstruction procedures have been verified on the Mars Pathfinder dataset. I find
inconsistencies within the published work of the Pathfinder science team, and even
in the PDS archive itself, relating to the entry state of the spacecraft. My atmo-
spheric structure reconstruction, which uses only a simple aerodynamic database,
is consistent with the PDS archive to about 4%. Surprisingly accurate profiles of
atmospheric temperatures can be derived without needing any information about
the spacecraft aerodynamics. Using no aerodynamic information whatsoever about
Pathfinder, my profile of atmospheric temperature is still consistent with the PDS
archive to about 8%. As a service to the community, I have placed simplified ver-
sions of my trajectory and atmospheric structure computer programmes online for

public use.

5.2 Introduction

5.2.1 Uses of Accelerometers in Spaceflight

An accelerometer instrument measures the linear, as opposed to angular, acceler-
ations experienced by a test mass. When rigidly mounted inside a spacecraft and
flown into space, an accelerometer instrument measures aerodynamic forces and
additional contributions from any spacecraft thruster activity or angular motion
of the test mass about the spacecraft’s centre of mass (Tolson et al., 1999). The
gravitational force acting on the spacecraft’s centre of mass cannot be detected
by measurements made in a frame fixed with respect to the spacecraft, since the
spacecraft, accelerometer instrument, and test mass are all free-falling at the same
rate. In practice, three dimensional acceleration measurements are synthesized from
three orthogonal one dimensional acceleration measurements, each measured by a
different instrument with inevitably slightly different properties. Instrument biases,
sampling rates, digitization errors, and so on also affect the accelerometer measure-

ment.
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When a spacecraft passes through the atmosphere of a planetary body,
it experiences aerodynamic forces in addition to gravity. These forces affect the
spacecraft’s trajectory. The gravitational acceleration is usually known as a func-
tion solely of position from a pre-existing gravity model for the planetary body.
In the absence of an atmosphere, the spacecraft trajectory can be calculated accu-
rately from that alone. However, the presence of an atmosphere and consequent
aerodynamic forces cause the spacecraft’s trajectory to differ from the gravity-only
case. Additional measurements are needed to define accurately the spacecraft’s tra-
jectory. Onboard accelerometer measurements of the aerodynamic acceleration of
the spacecraft can be combined with the gravity model to give the total acceleration
experienced by the spacecraft. The equations of motion can then be integrated to

reveal the spacecraft’s modified trajectory.

If the spacecraft is merely passing, or aerobraking, through a planetary
atmosphere, then the accelerometer measurements can be analysed later, upon
transmission to Earth, for the trajectory analysis and to reveal properties of the
atmosphere (Tolson et al., 1999). If the spacecraft is actively reacting to the forces
acting on it to reach a desired orbit, such as some aerocapture scenarios, then the
accelerometer data must be used in real-time onboard the spacecraft (Wercinski and
Lyne, 1994). If the spacecraft is a planetary lander or entry probe approaching the
surface or interior of the planetary body and needs to prepare for landing or deploy
sensors intended for lower atmosphere use only, then the accelerometer data can
also be used in real-time onboard the spacecraft (Tu et al., 2000). The accelerom-
eter data are not absolutely necessary for this; if there is sufficient confidence in a
model of the planetary atmosphere, a timer-based approach can be used instead.

However, this is rarely used due to the increased risk.

An atmosphere-entering spacecraft must carry an accelerometer for its tra-
jectory to be known and, for landers and entry probes, to control its entry, descent,
and possible landing, although radar altimetry and other techniques can also control

parts of the entry. These are the operational uses of accelerometer data. Scientific
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uses are also important.

5.2.2 Fluid Dynamics and Atmospheric Entry

The forces and torques acting on a rigid body, such as a spacecraft, traversing a
fluid region, such as an atmosphere, are, in principle, completely constrained given
the size, shape, and mass of the rigid body, its orientation, the far-field speed
of the fluid with respect to the rigid body, the composition of the fluid, and the
thermodynamic state of the fluid (Landau and Lifshitz, 1959; Landau and Lifshitz,
1969a; Landau and Lifshitz, 1969b). Specifying the thermodynamic state of a fluid
requires two intensive thermodynamic variables, such as density and pressure. As
an inverse problem, knowledge of the forces and torques acting on a rigid body,
physical characteristics of the rigid body, flow velocity, and fluid composition is just

one relationship short of completely constraining the thermodynamic state of the

fluid.

When a spacecraft is much smaller than the volume of the atmosphere, its
passage has no effect on atmospheric bulk properties. The atmosphere continues
to obey the same laws of conservation of mass, momentum, and energy that it did
prior to the arrival of the spacecraft. Conservation of momentum in a gravitational
field provides a relationship between the fluid density and pressure (Landau and

Lifshitz, 1959). This additional relationship supplies the needed final constraint.

Measurements of the aerodynamic forces and torques acting on a spacecraft
can uniquely define both the atmospheric density and pressure along the space-
craft trajectory. Using an appropriate equation of state reveals the corresponding
atmospheric temperature. Linear and angular acceleration measurements can be
converted into forces and torques using the known spacecraft mass and moments of

inertia.

Practical application, with the appropriate equations, of this abstract phys-

ical reasoning follows later. For now it is enough that I demonstrate that a unique
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solution exists. Accelerometer data can define profiles of atmospheric density, pres-
sure, and temperature along the spacecraft trajectory, provided the aerodynamic
properties of the spacecraft are known sufficiently well. These profiles are of great

utility to atmospheric scientists.

5.2.3 Flight Heritage

Accelerometers have successfully flown on the following entry probes/landers:
PAET (Planetary Atmosphere Experiments Test vehicle), Mars 6, both Viking lan-
ders, the 4 Pioneer Venus probes, Veneras 8-14, the Space Shuttle, the Galileo
probe, and Mars Pathfinder (Seiff et al., 1973; Kerzhanovich, 1977; Seiff and Kirk,
1977a; Seiff et al., 1980; Avduevskii et al., 1983; Avduevskii et al., 1983; Blanchard
et al., 1989; Seiff et al., 1998; Magalhaes et al., 1999). Accelerometers have suc-
cessfully been used in the aerobraking of Atmosphere Explorer-C and its successors
on Earth, Mars Global Surveyor, and Mars Odyssey (Marcos et al., 1977; Keating
et al., 1998). Atmospheric drag at Venus was studied without using accelerome-
ters on both Pioneer Venus Orbiter and Magellan (Strangeway, 1993; Croom and
Tolson, 1994). Failed planetary missions involving accelerometers include Mars 7,
Mars 96, Mars Polar Lander, Deep Space 2, and Mars Climate Orbiter. Upcoming
missions involving accelerometers include Beagle 2 and NASA’s Mars Exploration
Rovers for the 2003 Mars launch opportunity, and Huygens, currently on its way to
Titan (Lebreton et al., 1994; Sims et al., 1999; Squyres, 2001).

5.3 Equations of Motion

5.3.1 Previous Work

The aim of the trajectory integration is to reconstruct the spacecraft’s position
and velocity as a function of time. Although it is easy to understand the concept

of trajectory integration as “sum measured aerodynamic accelerations and known
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gravitational accelerations, then integrate forward from known initial position and
velocity” it is more challenging to actually perform the integrations. The primary
complications are that aerodynamic accelerations are measured in the frame of the
spacecraft, but the equations of motion are simplest in an inertial frame and the
final trajectory is most usefully expressed in a rotating frame fixed to the surface

of the planetary body.

Many of the publications in this field provide specific equations for the tra-
jectory reconstruction as applied to their work. Of these, most neglect planetary
rotation or include only the radial component of the gravitational field (Seiff, 1963;
Peterson, 1965b; Peterson, 1965a; Sommer and Yee, 1969; Seiff et al., 1973). Both
of these assumptions are sometimes valid, but [ wish to describe a general technique
for performing the trajectory integrations. Individual cases can then be examined
for terms which can be neglected. The trajectory reconstruction work for the Viking
landers includes only the radial component of the gravitational field (Seiff and Kirk,
1977a), whereas the trajectory reconstruction work for the Pioneer Venus probes
does not provide specific equations (Seiff et al., 1980). Galileo probe trajectory
reconstruction introduced the concept of changing frames between each integration
step to remove the Coriolis and centrifugal forces (Seiff et al., 1998). The trajec-
tory reconstruction integration for Pathfinder was performed in a planet-centred

spherical coordinate system rotating with the planet (Magalhaes et al., 1999).

5.3.2 Alternative Formulation

I have elected not to perform the trajectory integration in the rotating, planet-
fixed frame. Instead, I perform the integrations in an inertial frame. To express
the trajectory in a rotating, planet-fixed frame, I followed the work of the Galileo
trajectory reconstruction and used different intermediate frames at each timestep
(Seiff et al., 1998). These intermediate frames are instantaneously coincident with a

rotating, planet-fixed frame at the relevant point in time. Since the integrations of



170

the equations of motion are being performed in an inertial frame, there is no need
for the Coriolis or centrifugal forces. Vector positions, velocities, and accelerations
can be transformed between frames with standard techniques. These frame trans-
formations do not require the Coriolis or centrifugal forces either. This formulation
does not encourage an analytical solution, but this is not a great loss since any
realistic trajectory integration will be performed numerically. Thus I introduce two
sets of reference frames, inertial and momentary, in both Cartesian and spherical

polar coordinate systems. The subscripts inert and mom are used to label these.

5.3.3 Inertial Cartesian and Spherical Frames

A righthanded Cartesian coordinate system is defined with an origin at the centre
of mass of a planet and z-axis aligned with the planetary rotation axis, with the
positive x-axis to pass through the rotating planet’s zero east longitude line at time
t = 0. The y-axis completes a righthanded set. This is the inertial Cartesian frame.
One can then construct the usual spherical polar coordinate system about this
set. This is the inertial spherical frame. Most introductory mechanics or applied
mathematics textbooks, such as Arfken and Weber (1995), have diagrams of these

frames and their coordinates.

5.3.4 Momentary Cartesian and Spherical Frames

The position vector is r. | use the magnitude of r, 7,,,,, a colatitude referenced to
the surface of the planet, ,,,,, and an east longitude referenced to the surface of
the planet, ¢,0m, as a spherical coordinate frame. At any time ¢, it is non-rotating
and transformations between it and the inertial Cartesian frame do not need to
consider fictitious Coriolis and centrifugal forces. An instant later, as the planet
has rotated slightly, this frame is removed and redefined so that colatitudes and east
longitudes once again match up with surface features. It is not a rotating frame,

it only exists for an instant, and so only instantaneous transformations between it
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and other frames can be made. No integration with time can be done in this frame
because it does not exist for the duration of a timestep. This is the momentary

spherical frame.

One can then use the momentary spherical frame to construct a Cartesian
coordinate system with the usual conventions. This also only exists for an instant
and no integration with time can be done in this frame. This is the momentary

Cartesian frame.

5.83.5 Transformations between Frames

There are many different conventions for defining latitude and east longitude on
the surface of a planet. Geographic, geodetic, and geocentric are some of the more
well-known ones that are applied to the Earth (Lang, 1999). I shall assume that all
latitudes and east longitudes referenced to the surface of the planet are in a plan-
etocentric system. I use the east-positive planetocentric system for mathematical
convenience, as was used for Galileo, Mars Global Surveyor, and Pathfinder. Care
must be taken when comparing data to older planetary data products which may

use a west-positive planetographic system.

Consider an arbitrary vector B:

B = Byi + B,j + B.2 = B,i + By + By (5.1)

Unit vectors are indicated by carets and subscripts indicate the direction
of vector components. Expressions for the unit vectors of one frame in terms of the
other frame’s unit vectors are needed to transform between spherical and Cartesian
frames. These are given in, for example, Chapter 2 of Arfken and Weber (1995).
These apply to transformations between the two momentary frames and transfor-
mations between the two inertial frames. Finally, I need a transformation for B

between the momentary and inertial frames.
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The momentary Cartesian and inertial Cartesian frames are related as fol-

lows:

Tinert = Tmom €08 (W) — Yrmom sin (wi) (5.2)
Yinert = Lmom SN (W) 4 Ypmom cos (wi) (5.3)
éinert = émom (54)

Where w is the planetary rotation rate. It is now possible to transform
any vector quantity, such as a position, velocity, or acceleration, between all four
frames. I have assumed that the centre of mass of the planet is at rest in some
inertial frame. Its motion around the Sun and other motions, such as the motion
of the solar system, are neglected. The resultant error is small and can easily be

quantified.

5.3.6 Solution Procedure for the Gravity-only Case

In an inertial frame, the equations of motion of the centre of mass of a rigid body,

the spacecraft, are:
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Where v is velocity and a is acceleration. If the only force acting on the

centre of mass of the rigid body is gravity due to the nearby planet, then:

a=g(r)=YU(r) (5.7)
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Where g (r) is the gravitational acceleration and U (r) is the gravitational
potential. ¢ (r) does not include any centrifugal component since I am working in
an inertial frame. Here I expand U (r) only to second degree and order (Smith et al.,
1993). Cy is the tesseral normalized spherical harmonic coefficient of degree 2 and
order 0. P (z) is the normalized associated Legendre function of degree 2 and order
0. It is proportional to 322 — 1. There are many conventions for spherical harmonic
expansions. | use that of Lemoine et al. (2001) which follows Kaula (1966) in that
Py (1) = /5. The normalization convention for Cyo must be consistent with that

for Py ().

Ul(r)= oM (1 + < Tref )2 P (cos@mom)CQO) (5.8)

rmom rmom

Where GGM is the product of the gravitational constant and the mass of the

planet and r,. is a reference radius. Substituting in for Py, Equation 5.8 becomes:

—GM 3 Tres \? 2 .
o) = T (14598 (L) (et =1) Co) s (50
GM Te 2 1 . A
_ = <Tr f ) 5\/5 (6 CcOS Hmom sin emom) Cgotgmom

Given the coefficients of the gravitational field and an initial position and
velocity, the trajectory integration is straight-forward. I describe it below to illus-

trate the techniques that are used in the more complicated cases that follow.

Schematically, this trajectory reconstruction procedure can be expressed

as:

Beglﬂ with t, Linerty Yinerts Zinerts Vz,inerty Vy,inerts Uz inert-

Start loop.
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Linerts Yinerts finert — T'mom s gmomv ¢’m0m (510)

Tmom s Omom s Omom — Gromom s 96,mom s §p,mom (5'11)

Gromom s 98, mom s Yp,mom ™ Yz inerts Gy inerts 9z inert (512)

dwinert = vz,inertdta dyinert = vy,inertdta dZinert = vz,inertdt (513)
dvz,inert = gz,inm’tdta dvy,inert = gy,inertdta dvz,ineﬂf - gz,inertdt (514)

Is |Finert| < Planetary Radius?
Either stop or loop again.

The gravitational field is axisymmetric when truncated at second degree
and order. In this case, gravitational accelerations in either of the inertial frames
are functions of position only and can be found without needing to use the mo-
mentary spherical frame. If the gravitational field is not axisymmetric, then the
gravitational effects of mass concentrations rotate with the planet and gravitational
accelerations in either of the inertial frames are functions of position and time. This
technique, which is designed to be as general as possible, permits the use of non-
axisymmetric gravitational fields. If only axisymmetric fields are to be considered,

then the technique could be simplified.
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To include aerodynamic accelerations, this procedure is adapted to incor-
porate the transformation of aerodynamic acceleration from the frame of original
measurements, which is fixed with respect to the spacecraft, to the inertial Carte-

stan frame.

5.3.7 The Spacecraft Frame

Suppose that the accelerometer, which is rigidly mounted within the spacecraft,
measures the linear accelerations of the spacecraft’s centre of mass in three orthog-
onal directions. I define a fifth and final frame consisting of right-handed Cartesian
axes along these three orthogonal directions. This is the spacecraft frame. 1 label it

with the subscript sct.

The axis most nearly parallel to the flow velocity during atmospheric entry
is conventionally chosen as the z,.; axis. For axisymmetric spacecraft, such as those

with blunted cone shapes, this axis is also usually the axis of symmetry.

The orientation of the spacecraft frame, or spacecraft attitude, with respect
to any of the other frames I have discussed so far is not fixed or necessarily known.
The transformation of acceleration measurements between this frame and any of
the other frames is the main complication to be addressed in Section 5.4. First |
assume that an as-yet-undefined attitude tracking function exists that transforms
the measured acceleration components @gero, sty Gaeroy,scts Gaero,zsct 1Nto the inertial
Cartesian frame, Gguero5 inerts Qaero,yinerts Gaero zinert; Where I use the subscript aero
to indicate effects due to aerodynamics. I then outline the solution procedure using
this function. Finally I discuss different ways of generating this attitude tracking

function explicitly.
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5.4 The Effects of an Atmosphere on Trajectory Reconstructions

5.4.1 Addition of Aerodynamics to the Solution Procedure

The trajectory reconstruction procedure from Section 5.3.6 is modified to include
an additional calculation (Equation 5.19) which transforms the linear accelerations
of the spacecraft’s centre of mass due to aerodynamic forces from the spacecraft
frame to the inertial Cartesian frame, using the atlitude tracking function, and to

include these accelerations in the integration step.

Schematically, this trajectory reconstruction procedure can be expressed

as:

Beglﬂ with t, Linerty Yinerts Zinerty Va,inerty Vy,inerts Uz inert-

Start loop.
Tinerts Yinert: Zinert — Tmom s Omom s Gmom (5.15)
Pmoms Omom s Pmom — Gr.mom 96,mom , Gmom (5.16)
Gromom s §6.mom s G mom — Guinerts Gyinerts Yz inert (5.17)
AT inert = vz,inertdta dymert = vy,inertdta dZinert = vz,inertdt (5-18)

aaero,r.,scta aaero,y,scta aaero,z,sct ? aaero,x,inert; aaero,y,inerta aaero,z,inert (519)
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dvr.,inert - (gr,inert + aaero,aﬁ,inert) di (520)
dvy,inert - (gy,inert + aaero,y,inert) di

dvz,inm’t — (gz,inert + aaero,z,inert) di

Is |Finert| < Planetary Radius?
Either stop or loop again.

The key to implementing the above approach successfully is constraining
the attitude of the spacecraft. I discuss four options that can be used — head-on,
drag-only, acceleration ratios, and gyroscopes. One of these four will be applicable

to the vast majority of cases, but other options may exist.

5.4.2 The Head-on Option for Constraining Spacecraft Attitude

This option assumes that the spacecraft aerodynamics and attitude during atmo-
spheric entry are such that all aerodynamic forces acting on the spacecraft’s centre
of mass are directed along one of the axes, which 1 call the major axis, of the
spacecraft frame and also parallel to the flow velocity. The magnitude of the aero-
dynamic acceleration is assumed to be that of the acceleration along the major axis.
Acceleration measurements along the other two minor axes are ignored, regardless
of their importance. The direction of the aerodynamic acceleration is assumed to be
parallel to the known flow velocity. This is considered reasonable since spacecraft
with a blunted cone shape are usually approximately axisymmetric, with the axis of
symmetry being roughly parallel to both the flow velocity and the major spacecraft
frame axis, conventionally the z-axis. Galileo used this option (Seiff et al., 1998). In
neglecting acceleration measurements from the two other minor axes I assume that
they contain nothing but noise, which is a source of error. Since the spacecraft is
unlikely to align itself precisely along the flow velocity at all times, the direction in

which the acceleration is assumed to act is not precisely correct and this is another
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source of error. The flow velocity is the relative velocity of the fluid with respect
to the spacecraft in an inertial frame and I use the subscript rel to label this. The
atmosphere is assumed to rotate with the same angular velocity, w, as the planet.

I label the velocity of the atmosphere with the subscript wind.

The attitude tracking step of the trajectory reconstruction for the Head-On

option can be expressed schematically as:

Vwind,inert — WZinert X I (521)
Urelinert = Uinert — Vwind,inert (522)
1/2
_ 2 2 2
Vrel| = (vrel,x,inert + vrel,y,inert + vrel,z,inert) (523)

1/2

(2

Qaero| = (aaero,z,sct) (524)
Ggero

Qaero,inert = —1 x Urel,inert (525)
Urel

5.4.3 The Drag-only Option for Constraining Spacecraft Attitude

This option assumes that the spacecraft aerodynamics and attitude during atmo-
spheric entry are such that all aerodynamic forces acting on the spacecraft’s centre

of mass are directed parallel to the flow velocity. The square root of the sum of the
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squares of the three orthogonal acceleration measurements in the spacecraft frame
is the magnitude of the total aerodynamic acceleration. The direction of this accel-
eration i1s assumed to be parallel to the known direction of the flow velocity. This
is very similar to the head-on option. The difference is that the head-on option uses
only the major axis acceleration measurement in the spacecraft frame, whereas this
drag-only option uses all three orthogonal acceleration measurements. This option
assumes that there are no aerodynamic forces, called lift forces or side forces, acting
orthogonal to the flow velocity. Aerodynamic drag forces always act parallel to the
flow velocity. If the two minor axis acceleration measurements are predominantly
due to noise and rotational effects, then it is not useful to use them to reconstruct
the spacecraft’s trajectory and the head-on option is better than the drag-only op-
tion. If, on the other hand, the spacecraft is usually several degrees away from
being head-on to the flow, then these two minor axis acceleration measurements
are sensitive to those components of the aerodynamic acceleration along the flow
vector that are not parallel to the major axis of the spacecraft frame. In this case,
the drag-only option is better than the head-on option because it includes these
accelerations in the trajectory reconstruction. The drag-only option works well if
the spacecraft aerodynamics are designed to minimize aerodynamic forces perpen-
dicular to the flow velocity. One example of a class of objects which works well with
this option is a sphere. Aeroplanes, which use their wings to generate lift, would be

very badly modelled with this approach.

The attitude tracking step of the trajectory reconstruction for the Drag-Only

option can be expressed schematically as:

Vwind,inert — WZinert X I (526)

Urelinert = Uinert — Vwind,inert (527)
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1/2
(.2 2 2
Urel| = (vrel,w,inert + vrel,y,inert + vrel,z,inert) (528)
1/2
(.2 2 2
Qaero| = (aam’o,z,sct —I_ aaero,y,sct —I_ aaero,z,sct) (529)
Ggero
Gaeroinert = —1 x Urel,inert (530)
Urel

5.4.4 The Acceleration Ratios Option for Constraining Spacecraft Attitude

If the aerodynamic properties of the spacecraft are well-constrained and not a sin-
gular case, then the ratio of linear accelerations along any pair of spacecraft frame
axes uniquely defines one of the two angles necessary to define the spacecraft atti-
tude with respect to the flow velocity (Peterson, 1965b). Forming a second ratio of
linear accelerations along a different pair of spacecraft frame axes uniquely defines
the second and final angle. PAET used this option (Seiff et al., 1973). As in the
drag-only option, the square root of the sum of the squares of the three orthogonal
acceleration measurements in the spacecraft frame is the magnitude of the total
aerodynamic acceleration. Unlike the drag-only option, the direction of the aerody-
namic acceleration is known since the spacecraft attitude is known, rather than it

being assumed to be parallel to the flow velocity.

The acceleration ratios option offers an unexpectedly elegant way to con-
strain spacecraft attitude indirectly (Peterson, 1965b). For a known fluid compo-
sition and thermodynamic state, an axisymmetric spacecraft of known mass, size,
and shape, and a known fluid speed with respect to the spacecraft, only the angle
between the spacecraft symmetry axis and the flow direction is needed to constrain

completely the forces acting parallel to and perpendicular to the symmetry axis
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of the spacecraft. The thermodynamic state is defined by pressure and tempera-
ture or any other pair of intensive thermodynamic variables. Numerical modelling
and wind-tunnel experiments can generate an expression for the parallel force as
a function of this angle and a similar expression for the perpendicular force. The
ratio of these two forces, equal to the measurable ratio of accelerations, can also be
expressed as a function of this angle. If this function is single-valued, then it can
be inverted into an expression for spacecraft attitude angle as a function of acceler-
ation ratio. The ratio of linear accelerations measured in the spacecraft frame can
uniquely define the attitude of the spacecraft. Extension to asymmetric spacecraft
is simple, involving the aqero .z sct/ Gaero,z st AN Ggeroy st/ Gaero 2 sct acceleration ratios
constraining the two angles necessary to define spacecraft attitude relative to the
velocity vector of the fluid. Note that only two angles, rather than the traditional
three Euler angles, are required to completely define the orientation of a rigid body
since a third piece of directional information is supplied by the velocity vector of
the fluid. Once the two angles are known, they and the direction of v,¢ inert are
sufficient information to completely define the orientation of the spacecraft frame
relative to the inertial Cartesian frame. The aerodynamic accelerations can then
be transformed from the spacecraft frame to the inertial Cartesian frame. The de-
tails of the transformation depend on the definition of the two angles and may be
worked out using a text on the motions of a rigid body and relevant coordinate

transformations, such as Goldstein (1980).

The requirement for the acceleration ratios to be “well-behaved” functions
of spacecraft attitude is usually satisfied. However, the acceleration ratios option
requires knowledge of the atmospheric density, pressure, and temperature as the
trajectory reconstruction is being carried out, whereas the other options separate
the trajectory and atmospheric structure reconstruction processes completely. This
option also requires a comprehensive knowledge of the spacecraft aerodynamics
as a function of atmospheric pressure and temperature and spacecraft attitude.
The other options do not require this information until the atmospheric structure

reconstruction.
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In some cases, the x, y, and z-axis accelerations and the spacecraft aerody-
namics might not all be known accurately enough to provide very useful constraints
on spacecraft attitude. A simpler option, such as the head-on or drag-only options,

might be all that is justified.

The aerodynamic database needed for the acceleration ratios option must
contain the values of the auerop st/ Gaeroz,sct AN Gaeroy set/Gaero, s, sct acceleration ra-
tios for all possible values of fluid composition, pressure, temperature, speed with
respect to the spacecraft, and the two angles, «, 3, necessary to define spacecraft
attitude. a and # must be clearly defined relative to the orientation of the velocity

vector in the spacecraft frame and Peterson (1965b) offers one convention.

Since the aerodynamic properties of the spacecraft vary with atmospheric
pressure, p, and temperature, T', assumed profiles of atmospheric pressure and tem-
perature must be used in the trajectory reconstruction. After the trajectory recon-
struction is completed profiles of atmospheric pressure and temperature are derived
using the reconstructed trajectory. If these profiles derived using the results of the
trajectory reconstruction are not the same as the assumed profiles that went into
the trajectory reconstruction, then the process is inconsistent. The trajectory re-
construction should be repeated using these derived profiles in place of the assumed
profiles and then the atmospheric structure reconstruction should be repeated using
the updated trajectory. This process should be iterated until the assumed profiles
used in the trajectory reconstruction match the profiles derived from the subsequent

atmospheric structure reconstruction. Only a small number of iterations is usually

needed (Magalhaes et al., 1999).

The attitude tracking step of the trajectory reconstruction for the Acceler-

ation Ratios option can be expressed schematically as:

Vwind,inert — WZinert X I (531)
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Urelinert = Vinert — Vwind,inert (532)

.. Gaero,x,sct Ggero y,sct
composition, p, T, || — ——— (& — (a, £ 5.33
P R el aaero,z,sct ( ’ﬂ) ’ aaero,z,sct ( ’ﬂ) ( )
aaero,z‘,sct (a,ﬁ), aaero,y,sct (a,ﬁ) N (534)
aaero,z,sct aaero,z,sct

aaero,z,sct a/aero,y,sct aaero,z,sct a/aero,y,sct
o B
’ ’ ’
aaeTo,Z,sct a'aero,z,sct aaeTo,Z,sct aaero,z,sct

a, ﬁv Urelinert; Qaero,sct — Qaero,inert (535)

5.4.5 The Gyroscopes Option for Constraining Spacecraft Attitude

Gyroscopes measure the angular acceleration of the spacecraft frame about its centre
of mass. These additional measurements are incorporated into the equations of
motion for a rigid body, which then yield spacecraft position, velocity, attitude, and
angular velocity all along the trajectory. An initial angular position and velocity,
possibly provided by star tracking, are required as initial conditions. Viking used
this option (Seiff and Kirk, 1977a). As in the acceleration ratios option, the square
root of the sum of the squares of the three orthogonal acceleration measurements
in the spacecraft frame is the magnitude of the total aerodynamic acceleration.
Unlike the acceleration ratios option, spacecraft attitude, which gives the direction
of the aerodynamic acceleration in a useful frame, is tracked directly, rather than
being inferred from measured acceleration ratios and an aerodynamic database.

The gyroscopes option is, in principle, the best of the four. However, the additional
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instruments required by this option need money, mass, and volume that might not
be available. For spacecraft that satisfy any of the first three options, gyroscopes
are a redundant luxury for trajectory and atmospheric structure reconstruction.
However, operational requirements to monitor the engineering performance of the

spacecraft might justify that redundancy.

This is more complicated than simply inserting a subroutine into the pre-
existing algorithm, so I outline the entire algorithm. The relationship between
the spacecraft frame and the inertial Cartesian frame can be described using Fuler
angles. These three angles provide sufficient information to transform accelera-
tion measurements made in the spacecraft frame into the inertial Cartesian frame.
There are many arbitrary conventions concerning Fuler angles. Here I use the
xyz-convention from page 608 of Goldstein (1980) in which Goldstein’s unprimed
coordinate system is the inertial Cartesian frame and Goldstein’s primed coordinate
system is the spacecraft frame. This choice allows rates of change of the Euler angles
to be expressed in terms of the Euler angles and angular velocities in the spacecraft
frame, which simplifies my integrations. In actual calculations quaternions may be
preferred because Euler angles can be indeterminate for certain attitudes — just as
the east longitude of the north pole is indeterminate. I present Euler angles here

because the formulation is relatively simple.

The Euler matrix in the xyz-convention, £M, is constructed from the Euler
angles as described in Goldstein (1980) and enables the conversion of vectors be-

tween the inertial Cartesian (unprimed) frame and the spacecraft (primed) frame.

B'=EM B (5.36)

Where B is an arbitrary vector. [ expand the initial condition to include the
three Fuler angles, ¢puier, Y Euler, Opuer and the angular velocity of the spacecraft,
0, about its axes at the appropriate time. For example, the angular velocity might

be a predetermined spin. The Euler angles change with time due to the rotation
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of the spacecraft about its axes. Rearrangement of Goldstein’s equations B-14xyz

gives:

éEuleT _ Qy,sct sin 77Z)Eule7’ + Qz,sct Cos rQZ)EuleT (537)

Cos eEuler

77Z'}E'ule7‘ - Qx,sct + tan eEuler X (Qy,sct sin ¢Eule7’ + Qz,sct COs 77Z)Eule7‘) (538)

eEuler - Qy,sct Cos 77Z}Eule7‘ - Qz,sct sin ¢Eule7‘ (539)

QLSC“Q%SC“QMH are the components of the angular acceleration of the
spacecraft about the three spacecraft frame axes. They are directly measured by

the gyroscopes.

The trajectory reconstruction for the Gyroscopes option can be expressed

schematically as:

Beglﬂ with t, Linerts Yinerts Zinerts Vz,inerts Uy inerts Vzinert, ¢Eule7’7 77Z)Eule7’7 0Eule7’7

Qm,sct; Qy,sch Qz,sct

Start loop.

Tinerts Yinerts Zinert — T'mom s 9mom7 ¢mom (540)

Tmom gmomy ¢mom — Gr.mom s 98,mom s 9, mom (541)

Gromom s 48, mom s §p,mom 7 Yz inerts Gy inerts 9z inert (542)



¢Eule7’7 77Z)Eule7’7 aEuleT — B

Gaero,inert = M Asctinert

dminert — vz,inertdty dyinert — vy,inertdty dZinert — Uz,inertdt

dvaz,inert — (gz,inert + aaero,az,inert) di
dvy,inert — (gy,inert + aam’o,y,inert) di

dvz,inm’t - (gz,ine'rt + aaero,z,ine'rt) di

Qy set SIN Y Eyier + Qs st €OS VEyier
d¢Eule7’ — ( yiet ¢E fer & o5t ¢E : )dt

CcOos gEuler

erZ)Euler — (Qx,sct + tan eEuler X (Qy,sct sin rQZ)Euler + Qz,sct Cos 77Z)Eule7’)) di

daEuler - (Qy,sct Cos ¢Eule7‘ - Qz,sct sin 77Z)Eule7‘) dt

dﬂx,sct - Qr,sctdta dﬂy,sct - Qy,sctdt7 dﬂz,sct - Qz,sctdt

Is |Pinert| < Planetary Radius?

Either stop or loop again.
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5.4.6 Summary of Techniques Used to Constrain Spacecraft Attitude

The head-on, drag-only, and acceleration ratios options require knowledge of the
flow velocity. The simplest assumption is that the atmosphere of the planet is
rotating with the same angular velocity as the interior of the planet. Atmospheric
bulk motions, winds, can modify this flow pattern. If precise knowledge of the flow
velocity is important, then direct wind measurements or predictions from climate

models can be used to define it.

In practice, accelerometers are rarely mounted at the spacecraft’s exact
centre of mass. In addition to aerodynamic accelerations, these poorly-positioned
accelerometers also measure terms due to the angular motions of the spacecraft
about its centre of mass. If these are periodic, they can be isolated within the
measured accelerations and removed. The justification for this additional data
processing is strongest if the period can be related to known properties of the
spacecraft, such as its moments of inertia. Unless there is a justification for the
periodic acceleration, it is not known whether or not it is appropriate to remove it.
It might be signal, not noise. Spencer et al. (1999) identified a signal related to
the 2-rpm roll rate of Pathfinder in its accelerometer measurements. If the x- and
y-axis aerodynamic accelerations are small, due to the majority of the aerodynamic
accelerations being aligned with the z-axis, and the x- and y-axis accelerometers are
located far enough from the centre of mass to have their measurements significantly
affected by these rotational terms, then it may be best to neglect the x- and y-axis

measurements and just use the z-axis measurements in the head-on option.

In summary, the head-on and drag-only options are simple to implement
and do not require any additional datasets such as aerodynamic databases or in-
flight gyroscopic measurements, but use idealized, approximate aerodynamics that
introduce uncertainties. The acceleration ratios option can indirectly reconstruct
spacecraft attitude without any additional flight hardware, but requires an accu-

rate aerodynamic database and may accumulate uncertainties during the indirect
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reconstruction process. The gyroscopes option can directly reconstruct spacecraft
attitude but requires additional flight hardware. Unless the spacecraft has a sig-
nificant amount of lift, the simple head-on or drag-only options often give just as
useful results for the trajectory and atmospheric structure reconstruction as the

more complicated and expensive acceleration ratios or gyroscopes options.

5.4.7 Parachute Considerations

Many planetary entry spacecraft deploy parachutes. These would be torn apart if
deployed early in the entry when the spacecraft is typically travelling at hypersonic
speeds. Deployed at slower, near-sonic speeds, they decrease the terminal velocity
of descent and allow the spacecraft to make more scientific measurements during
descent. They also allow landings without impractically large retrorockets. The
aerodynamic properties of disk-gap-band parachutes, a common type for planetary
spacecraft, are much more complicated than those of the aeroshells which typically
encase spacecraft during entry (Bendura et al., 1974; Braun et al., 1999). This
makes the acceleration ratios option impractical after parachute deployment. Apart
from that, the main effect of parachute deployment on the trajectory reconstruction
is to introduce some oscillatory motions into the spacecraft, and hence into the
measured accelerations as well, as it swings around on the end of its parachute
(Magalhaes et al., 1999). Trajectory reconstructions using the head-on or drag-only
options are correct in an average sense, but the actual trajectory deviates from this
reconstruction due to the swinging of the spacecraft. Trajectory reconstructions
using the gyroscopes option should remain accurate. In practice, the sampling rate
is often reduced after parachute deployment to reduce data volume and care must

obviously be taken that this does not degrade the reconstruction.
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5.4.8 Error Considerations

Several sources of error, including winds and rotational effects on accelerometers
positioned away from the centre of mass, have been mentioned thus far. There are
many others, including uncertainties in the spacecraft’s entry state, in the planet’s
gravitational field, in the end-to-end gain and offset of the accelerometers and their
temperature dependences, in the alignment and position of the accelerometers, and
also noise, numerical accuracy of reconstruction software, and the digitization of
the accelerometer signal (Peterson, 1965a). The effects of these errors and uncer-
tainties on the accuracy of the trajectory reconstruction can be estimated as follows

(Peterson, 1965a):

The spacing in time of points along the reconstructed trajectory is con-
trolled by the accelerometer sampling rate. For example, 10 Hz sampling gives a

spacing of 0.1 s.

The vertical resolution of the data points is the ratio of the vertical speed
and the accelerometer sampling rate. For example, a vertical speed at entry of 1

km s7! and a sampling rate of 10 Hz corresponds to a vertical resolution of 100 m.

The uncertainty in the absolute altitude of each data point is affected by:

e Acceleration uncertainty and error, Aa, due to instrument resolution, noise,
changes in gain and offset since calibration, any systematic offset, corrections
for off-centre instrument position, etc., integrates to an uncertainty in altitude
of 0.5 t2 x Aa. For example, Aa of 107* m s72 and t of 1000 s gives an

uncertainty of 50 m.

e Uncertainty in the gravitational field, Ag, at a known position integrates to

2

an uncertainty in altitude of 0.5 t? x Ag. For example, Ag of 107* m s™% and

t of 1000 s gives an uncertainty of 50 m.

o Uncertainty in vertical entry velocity, Av, integrates to an uncertainty in
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altitude of t x Av. For example, Av of 0.1 m s™" and t of 1000 s gives an

uncertainty of 100 m.

Uncertainty in the entry state altitude, which was about 2 km for Pathfinder
(Magalhaes et al., 1999). If the planet’s topography is well-known, then the
landed altitude may be known to better than this from the landed latitude and
east longitude, although this requires integrating backwards in time through
the parachute region of descent. Uncertainties in landed latitude and east
longitude may still be large, but selection of a relatively flat target for landing
ensures a relatively small uncertainty in altitude. This landed position can
be used in preference to the entry position as a boundary condition on the
integration for the trajectory reconstruction. For example, 100 m may be
the uncertainty in altitude for a landing on flat terrain with much larger

uncertainties in horizontal position.

Uncertainty in gravitational acceleration due to uncertainty in position. Un-
certainty in gravity equals uncertainty in altitude x 2g/r. This is in addition
to any uncertainties in the gravitational field at any known position. This

should be included with the earlier Ag term.

The uncertainties in the absolute latitude and east longitude of each data

is affected by:

Acceleration uncertainty and error, Aa, due to instrument resolution, noise,
changes in gain and offset since calibration, any systematic offset, corrections
for off-centre instrument position, etc., integrates to an uncertainty in latitude
and east longitude of 0.5 t? x Aa. For example, Aa of 10™* m s and t of

1000 s gives an uncertainty of 50 m.

Uncertainty in horizontal entry velocity, Av, yields an uncertainty in altitude
of t x Av. For example, Av of 0.1 m s! and t of 1000 s gives an uncertainty

of 100 m.
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e Uncertainty in the entry state latitude and east longitude, which was about 2

km for Pathfinder (Magalhaes et al., 1999).

Since the errors in position due to acceleration uncertainties and errors
accumulate as the square of time since entry, it is imperative that the accelerometers
be well-calibrated. Whilst the error due to noise is important on short timescales,
but averages to zero on long timescales, any offset or gain error is cumulative through

the integration process.

Whichever option is used for constraining spacecraft attitude, the transfor-
mation of measured accelerations from the spacecraft frame to the inertial Carte-
sian frame introduces additional uncertainties. The uncertainties introduced by the
head-on and drag-only options should be estimated by, e. g., altering the prescribed
direction of the acceleration vector by some amount and performing another trajec-
tory reconstruction with this altered dataset. Maximum likely changes in direction
have to be estimated from the aerodynamic modelling work that was used to justify
the use of these simple options. Comparison to the nominal trajectory reconstruc-
tion provides an estimate of the uncertainties that could accumulate under these
options. The uncertainties introduced by the acceleration ratios option should be
found by formally propagating the uncertainties in the measured accelerations and
in the aerodynamic database through the various steps in the frame transforma-
tion procedure. The uncertainties introduced by the gyroscopes option should be
calculated by propagating the additional instrumental and entry state uncertainties
through the frame transformation procedure. The head-on, drag-only, and acclera-
tion ratios options should compare likely atmospheric winds beyond those included
in the trajectory reconstruction to the spacecraft velocity and propagate this un-
certainty in the velocity of the spacecraft relative to the atmosphere through the

various steps in the frame transformation procedure.

Generally mission goals, such as accuracy of reconstructed position and ve-

locity, are set before flight and a detailed uncertainty analysis can evaluate if the
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proposed instrument specifications can achieve those goals. Since space missions in-

volve redundancy further constraints on the trajectory reconstruction, which reduce

the errors, can be provided by additional information such as:

5.5

5.5.1

The Doppler shift of telemetry during descent places crude constraints on
the descent speed. The transmitted frequency of the telemetry is not usually

known well enough to provide very accurate constraints.

Any radar altimetry during descent, which is nominally a trigger for events
during entry, descent, and landing, constrains the altitude and descent speed

if the underlying topography is “well-behaved” or known.

The Doppler shift of transmissions after landing enables the landing site po-
sition to be located to very high precision and accuracy. This is most helpful
if the spacecraft does not roll/bounce too far between its initial impact and

coming to rest.

The measured acceleration due to gravity at the landing site places crude
constraints on the accuracy of the accelerometers. Uncertainties in the gravi-
tational field at the landing site mean that this does not provide very accurate
constraints. The landed orientation of the spacecraft will be known from im-

ages of its surroundings, so any tilt can be corrected for.

Trajectory Reconstruction applied to Mars Pathfinder

Programming Details

I have written computer programmes in Research Systems’s IDL, programming lan-

guage which perform trajectory reconstructions as discussed in the previous sec-

tion. The head-on, drag-only, and gyroscopes options have been implemented. At

the time I developed these programmes I did not have access to a realistic aero-

dynamic database for a planetary entry spacecraft, so I have not yet implemented
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the acceleration ratios option. I have recently been made aware of the publica-
tion of a significant portion of the Pathfinder aerodynamic database in Moss et al.
(1998) and Gnoffo et al. (1996). I hope to use this database to implement the
acceleration ratios option in my programmes in the future. The integrations are
performed using IDL’s fourth order Runge-Kutta procedure when accuracy is most
important. I have tested it on the publicly available Mars Pathfinder dataset, PDS
volume MPAM_0001 (Golombek et al., 1997; Golombek, 1999). All the information

necessary to reconstruct Pathfinder’s trajectory is present in this volume.

Since Pathfinder was not equipped with gyroscopes my trajectory recon-
struction is restricted to using the head-on or drag-only options for determining
spacecraft attitude. Since work by the Pathfinder accelerometer engineering and
science teams using a good aerodynamic database and the acceleration ratios op-
tion showed that Pathfinder’s symmetry axis is very close to the direction of aero-
dynamic decelerations experienced during its atmospheric entry, I was able to use

the head-on option in my trajectory reconstruction (Spencer et al., 1999; Magalhaes

et al., 1999).

5.5.2 Assembly and Preparation of Pathfinder’s Accelerometer Data

Pathfinder’s entry state, as stated in the PDS file /document/edlddrds.htm, is a
radial distance from the centre of mass of Mars, r, of 3597.2 + 1.7 km, an areocentric
latitude, 6, of 23° £+ 0.04°N, an east longitude, ¢, of 343.67° £+ 0.01°E, an entry
speed, Ventry, of T444.7 £ 0.7 m s, a flight path angle below the horizontal, v,
of 16.85° £ 0.02°, and a flight path azimuth measured clockwise from north, v, of
255.41° 4 0.02°. All these are quoted in a Mars-fixed, i. e., rotating, coordinate
system at July 4th, 1997, 1651:12.28 UTC. I label this entry state as the PDS entry

state.

The spacecraft position in this frame is identical to position in the momen-

tary spherical frame at this instant, so it can easily be transformed into the inertial
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Cartestan frame for the first step in the trajectory integration using the results of
Section 5.3.5. The spacecraft velocity can be transformed from this frame into the

inertial spherical frame as follows:

Urmom = —UVentry SiH’Y (551)
Vg,mom = —Uentry COS 7y COS ¢ (552)
Ve mom = Ventry COS Y SIN ) + wr sin (5.53)

An alternative entry state has been published by the Pathfinder engineers
(Spencer et al., 1999). In theory, a trajectory reconstruction using one entry state
should pass through the other entry state. This entry state, which I label as the en-
gineering entry state, is a radial distance from the centre of mass of Mars, r, of 3522
km, an areocentric latitude, 6, of 22.6303°N, an east longitude, ¢, of 337.9976°F,
an entry speed, vensry, of 7264.2 m s™!, a flight path angle below the horizontal,
v, of 14.0614°, and a flight path azimuth measured clockwise from north, ., of
253.1481°. The relevant time is July 4th, 1997, 1651:50.482 UTC. Uncertainties
were not published. The position is once again quoted in the Mars-fixed, i. e., ro-
tating, coordinate system, but the velocity is not. The velocity is given in an inertial,
i. e., non-rotating, coordinate system. The spacecraft velocity can be transformed

from this frame into the inertial spherical frame as follows:

Ur mom = —Uentry SiH’Y (554)

V8, mom = —Ventry COS 7y COS @Z) (555)
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Vgmom = Ventry COS Y SIN 1 (5.56)

Note that Equations 5.54 — 5.56 are identical to Equations 5.51 — 5.53 with
w = 0. The PDS entry state corresponds to an altitude of about 210 km above the
final landing site, the engineering entry state, about 38 seconds later, corresponds

to an altitude of about 130 km. I shall initially use the PDS entry state.

There are many files of accelerometer data archived in the PDS volume in
the /edl_erdr directory. As discussed in the file /document /edler_ds.htm, the best is
the file /edl_erdr/r_saccs.tab because of its high (32 Hz) sampling rate. The data
need to be multiplied by a reference value for the Earth’s gravity, 9.795433 m s~2,
which is given in the file /edl_erdr/r_sacc_s.1bl.

One x-axis data point is 0.0, a clear outlier from the neighboring data
points. One z-axis data point is also 0.0 and an outlier. These are mentioned in
Magalhaes et al. (1999) but not in the file /document/edler_ds.htm. I replaced
these with an interpolation from neighboring data points. There are also about ten
data points in the y-axis data that are zero. However, these are consistent with

neighboring data points and have not been modified.

The accelerometers have several different gain states. The gain state of
each accelerometer changed several times during atmospheric entry. When an ac-
celerometer changes gain state, there is a brief acceleration pulse that is an artifact
of the electronic time constant of the sensor (Magalhaes et al., 1999). From calibra-
tion studies, as discussed in the file /document /edlddrds.htm, it was found that 1
second’s worth of data are corrupted immediately after a change in gain state. Gain
state changes can be located by examining the listing of the gain states of each ac-
celerometer as a function of time in the file /edl_erdr/r_sacc_s.lbl. The corrupted 1
second intervals of data were replaced with an interpolation from neighboring data

points.
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The accelerometers continued to record data for a short time after impact
when the spacecraft was bouncing and rolling around on the surface. The head-on
option for constraining spacecraft attitude is clearly useless after impact, so all data
recorded after landing are discarded from the data files. The moment of impact is
easily identified in the accelerometer data as the first of a series of 10 g spikes in

the accelerometer data, each about half a second in duration.

The first acceleration measurements are made at 1 Hz, not 32 Hz. For com-
putational simplicity, [ interpolated the earliest measurements to the same sampling

rate as the rest of the dataset.

Acceleration measurements in the data file begin earlier than the PDS entry
state. Those that precede the initial position and velocity that provide the boundary
conditions for the trajectory integration are discarded, although of course they
could be back integrated to recover the trajectory prior to the entry state. The
files /edl_erdr/r_saccs.Ibl and /edl_erdr/r_sacc_s.tab provide the times of each data

point.

The planetary sidereal day of 24.6229 hours is necessary for all the frame
transformations (Lodders and Fegley, 1998). The planet’s gravitational field is
specified by GM, r..s, and Cyo as discussed in Section 5.3.6. These values are
updated regularly in light of improved data, but significant changes are confined
to the higher order terms. The original reconstructions of the Mars Pathfinder
trajectory and atmospheric structure occurred before the MGS revolution in martian

geodesy and used values from the model GMM-1 (Smith et al., 1993).

The relevant values are GM = 4.282828 x 10" m?3 s7%, r,.; = 3394.2
km, Cy = —8.75977 x 10=*. This value for Cyy corresponds to a normalization

convention for Py of Py (1) = V5 (Kaula, 1966).

Since my aim is to reproduce the archived Pathfinder results, I did not use
the latest values for these parameters. Higher order terms are neglected since they

are not large enough to significantly affect the trajectory reconstruction.
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This is all the information necessary to reconstruct the trajectory of Mars
Pathfinder. For convenience, I also tracked the altitude of the reconstructed trajec-
tory above the landing site by subtracting the planetary radius of the final landing
site, 3389.715 km, from the reconstructed radial distances. This is given in the file
/document /edlddrds.htm to six significant figures and in Magalhaes et al. (1999).
All references to “altitude” imply radial distance with this value subtracted — never

distance from an equipotential or any other reference surface.

To verify my trajectory reconstruction, I compared it to that archived with
the PDS in files /edl_ddr/edl_ddr.Ibl and /edl_ddr/edl_ddr.tab. This archived tra-
jectory begins at an altitude of about 140 km, significantly below the PDS entry
state at 210 km altitude. It ends at parachute deployment, at about 10 km altitude.

5.5.3 Entry State Problems

Using the PDS entry state at 210 km, my reconstructed trajectory systematically
differs from the PDS’s by about a degree in both latitude and east longitude, as
shown in Figures 5.1 and 5.2.

My latitudes as a function of time are about a degree south of the PDS’s.
My east longitudes as a function of time are about a degree east of the PDS’s. These
are many times greater than the hundredths of degree-scale uncertainties in latitude
and east longitude in the PDS entry state. A significant problem exists in either
my work or the PDS archive. The trajectory archived with the PDS only extends
up to 140 km altitude, yet Figure 2 of Magalhaes et al. (1999) shows the trajectory
up to 210 km altitude. Below 140 km altitude, the PDS trajectory and Figure 2
of Magalhaes et al. (1999) appear identical under visual inspection. Magalhaes
et al. (1999) quote the PDS entry state exactly as the initial conditions used for
their paper. However their Figure 2 shows a latitude of between 23.8 and 24.0°N
and an east longitude of between 342.5 and 343.0°E at 210 km altitude — while
the entry state gives a latitude of 23° 4+ 0.04°N and an east longitude of 343.67° +
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Figure 5.1: Reconstructed latitude as a function of time from the PDS archive and
the results of this chapter using the PDS entry state. The PDS trajectory extends
from 140 km to 10 km altitude. The trajectory derived in this chapter extends from
210 km to 0 km altitude.
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Figure 5.2: As Figure 5.1, but east longitude.
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0.01°E. This appears to me to be an inconsistency within Magalhaes et al. (1999),
regardless of any of my trajectory reconstruction work. This offset is of the same

size and in the same direction as the offset between my reconstructed trajectory

and the PDS values.

If I instead use the engineering entry state at 130 km altitude from Spencer
et al. (1999), the systematic offset between my reconstructed trajectory and the
PDS trajectory reduces to a few hundredths of a degree in both latitude and east
longitude, as shown in Figures 5.3 and 5.4, which is comparable with the likely
uncertainties in latitude and east longitude in the engineering entry state. I as-
sume that the uncertainties in the engineering entry state are comparable to the
uncertainties in the PDS entry state since both are derived from the same tracking

data.

I have taken the engineering entry state and integrated its trajectory back-
wards in time under the influence of gravity only. Under visual inspection, it appears
identical to Figure 2 of Magalhaes et al. (1999) and hence does not pass through the
position quoted as the PDS entry state. At the time of the engineering entry state,
the position of the engineering entry state differs from that of the PDS trajectory
by only ~ 0.1° in latitude and east longitude.

A reviewer points out that the engineering entry speed is slower than the
PDS entry speed, despite being at a lower altitude. Before significant atmospheric
deceleration occurs, the spacecraft should speed up as it approaches Mars due to the
attraction of martian gravity. This is another inconsistency between the engineering

and PDS entry states.

I conclude that there is an error in Magalhaes et al. (1999), most likely
in the entry state. This error is probably present in the PDS archive as well.
Considering these inconsistencies, | elected to use the engineering entry state in my
trajectory integrations. Since the engineering entry state occurs at a later time than

the PDS entry state [ again discard any accelerometer measurements that preceeded
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Figure 5.3: Derived Pathfinder latitude subtracted from the PDS reconstructed
latitude using the engineering entry state as a basis.



0.05

o
o
~

Difference in Longitude (°E)

000 v
3100 3150 3200 3250 3300

0.03}
0.02¢

0.01¢

I

I

I

1 1 1

Time since 1600 UTC (s)

Figure 5.4: As Figure 5.3, but east longitude.

202



203

it.

5.5.4 Results

Using the engineering entry state, the trajectory reconstruction results shown in

Figures 5.3 — 5.5 are of good quality.

Differences in latitude and east longitude between my values and the PDS
data are on the order of a few hundredths of a degree. Differences in altitude are
less than the uncertainty quoted for the PDS entry state and are on the order of
a percent. | attribute the systematic offset in latitude and east longitude to the
fact that the PDS trajectory is shifted to reproduce the landed position (Magalhaes
et al., 1999). I do not have a convincing explanation for the diminishing offset in

altitude.

Continuing the trajectory through the parachute phase, my position at the
time of landing is 502.7 m altitude below the reference radius of 3389.715 km,
19.054 degrees north latitude, and 326.445 degrees east longitude. The PDS landed
position is at the reference radius of 3389.715 km, 19.09 degrees north latitude, and
326.48 degrees east longitude

Note that these results have been achieved without using any sophisticated

aerodynamics.

5.6 Atmospheric Structure Reconstruction

5.6.1 Fluid Dynamics During an Atmospheric Entry

The forces and torques acting on a rigid body moving through a fluid are, in prin-
ciple, completely constrained given the size, shape, and mass of the rigid body, the

flow velocity of the fluid with respect to the rigid body, the composition of the fluid,
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and the thermodynamic state of the fluid. Specifying the thermodynamic state of a

fluid requires two intensive thermodynamic variables, such as density and pressure.

For any given direction which may be related either to the spacecraft frame
or to the direction of the fluid velocity, the aerodynamic force, F,.,,, acting on the

spacecraft can be expressed as follows:

—pCAV?

Fae'ro -
2

ma (5.57)
Where p is the fluid density, A is a characteristic spacecraft area, V' is the
speed of the spacecraft relative to the fluid, m is the mass of the spacecraft, and a

is the acceleration of the spacecraft.

This is simply the result of a dimensional analysis of the problem, with
the factor of two used by convention. All of the dependences on the body’s shape,
orientation, fluid composition, fluid temperature, and so on are hidden away in
the dimensionless force coefficient C'. If the chosen direction is parallel to the
spacecraft’s velocity with respect to the atmosphere, C' is the drag coefficient and
is often labelled with a subscript D. If the chosen direction is in the plane defined
by the spacecraft’s velocity with respect to the atmosphere and the direction of
gravity and is also perpendicular to the spacecraft’s velocity with respect to the
atmosphere, ' is the lift coefficient and is often labelled with a subscript L. If
the chosen direction is perpendicular to the drag and lift forces, C' is the side force
coefficient and is often labelled with a subscript Y. If the spacecraft is axisymmetric
and the chosen direction is parallel to this axis, (' is the axial force coefficient and
is often labelled with a subscript A. If the chosen direction is perpendicular to this
axis, C' 1s the normal force coefficient and is often labelled with a subscript N. To
emphasize that this force balance can be applied to any chosen direction, I retain
the general force coefficient C' rather than working with the common special cases

of either the drag coefficient Cp or normal force coefficient Cy.
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Changes in the spacecraft’s speed and the atmosphere’s physical properties
during an atmospheric entry affect the spacecraft’s aerodynamics. Here I outline the
different aerodynamic regimes important for an atmosphere-entering spacecraft. I
focus on the most important physical phenomena rather than on the exact numerical
values of the force coefficients. 1 do not discuss changes in a given force coefficient
with changes in spacecraft attitude. Vinh et al. (1980) discuss this issue. I focus

on the drag coefficient since this is usually the most useful of the force coefficients.

The Navier-Stokes equation for the conservation of linear momentum in a

continuum fluid can be written as:

pFE+@zw}:4@—zxmzxm (5.58)

Where 7 is the dynamic viscosity of the fluid. Working in the rest frame
of a spacecraft in a planetary atmosphere, the spacecraft can be considered as an
immersed object around which the continuum fluid must flow. This equation must
be satisfied throughout the fluid and boundary conditions apply at the spacecraft-

fluid interface.

By expressing each quantity in this equation (say z) in terms of the product
of a characteristic value for that quantity (zo) and a dimensionless number (z'), the

equation can be rearranged to yield:

Povq POLO’UO

# |  w] = - (2 ) o () S ) (559)

The spatial derivative, V, is expressed as V'/Lq. The first ratio of charac-
teristic values in parentheses is related to the Mach number, Ma, which is defined as
the ratio of the characteristic speed to the sound speed. For an ideal gas, the sound

speed is given by (7fyid p/,o)l/2 where 1,4 18 the ratio of specific heats of the fluid
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Landau and Lifshitz (1959). Hence this first ratio is 1/9mia Ma*. Note that it
contains a dependence on the composition of the fluid through ~4;,4. The second
ratio of characteristic values in parentheses is defined as the inverse of the Reynolds
number, Re. Physically different situations have identical dimensionless solutions
for this equation if they have the same Re, Ma, and dimensionless boundary con-
ditions (Bertin and Smith, 1979). This means that the aerodynamic behaviour of
a large spacecraft under a specified atmospheric composition, density, and temper-
ature can be studied experimentally with small-scale models immersed in a fluid of
different density or temperature. This is significantly easier than building a wind
tunnel large enough to contain a full-size spacecraft, capable of generating many
different flow speeds, and able to be filled with a range of gases, such as CO; for

Mars, Ny for Titan, and H, for Jupiter, with various densities.

I first consider small Ma for which the fluid is incompressible. For small
Re where viscous forces dominate over inertial forces, Stokes drag causes values of
the drag coefficient far exceeding unity and inversely proportional to Re (Faber,
1995). As Re increases, the drag coefficient decreases towards values near unity.
The increase in Re confines the effects of viscosity to a thin layer, the boundary
layer, near the surface of the body. Flow is at first laminar within the boundary
layer (Bertin and Smith, 1979). The bulk of the fluid behaves as if it were invis-
cid. As Reincreases further, the flow within the boundary layer becomes turbulent,
which decreases the drag, and the boundary layer separates from the surface, which
increases the drag (Faber, 1995). Which of these two transitions occurs first and
which dominates depends on the specific situation under consideration. For a van-
ishingly small viscosity, or large Re, there is still appreciable resistance to flow.
For the idealized case of a perfectly inviscid fluid and infinite Re, there should be
no forces on the spacecraft at all. Flow at low Re is laminar, flow at high Re is

turbulent and this fact is not dependent on Ma (Owczarek, 1964).

This picture is modified as Ma increases and the fluid becomes more com-

pressible, which means that work can be done upon it. Variations in temperature
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within the fluid become large enough that heat transfer is important and the con-
servation of energy must be considered in constructing equations to describe the
flow (Owczarek, 1964). This extra conservation law, which is considered simultane-
ously with the conservation of momentum, alters the behaviour of the flow and the
force coefficients. Flows in which Ma is everywhere less than one are called sub-
sonic. A transonic flow contains regions where Ma is less than one and where Ma is
more than one. Theoretical models of transonic flow are challenging because they
must include both subsonic and supersonic flow. Flows in which Ma is everywhere
greater than 1 are called supersonic. Hypersonic flows are supersonic flows in which
the fluid cannot be treated as an ideal gas, either because it becomes dissociated,
is no longer in thermodynamic equilibrium, or for some other reason. A working

definition of hypersonic flow is Ma > 5.

A thermal boundary layer develops in compressible flows, similar to the vis-
cous boundary layer, within which the effects of compressibility and heat transfer
are confined (Owczarek, 1964). This affects the flow of the fluid and the force co-
efficients. Shock waves develop in regions of the fluid where the flow is supersonic.
Thermodynamic and flow properties can be discontinuous across a shock. Inter-
actions between the boundary layer and shock waves also alter the drag. These
become more important as Ma increases and the shock waves approach closer to
the spacecraft’s surface and the boundary layer. At hypersonic speeds the effects
of viscosity and compressibility are important throughout the shocked region of
the flow, rather than being confined to boundary layers (Owczarek, 1964). At hy-
personic speeds it is a reasonable approximation to consider the force coefficients

independent of Ma and Re (Vinh et al., 1980).

The continuum fluid model only applies if molecular collisions within the
fluid are much more frequent than collisions between molecules and the spacecraft.
Equivalently, if gradients in thermodynamic properties are shorter than the mean
free path of molecules within the fluid then the continuum model does not apply

(Bird, 1994). The Knudsen number, Kn, defined as the ratio of the mean free path
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of molecules within the fluid to the characteristic length, is useful here. Using the
kinetic theory of gases, Ma/Re ~ [x"n/'y}l/jid (Owczarek, 1964). If Kn is less than
0.01, then continuum flow applies. In this limit the fluid adjacent to the spacecraft
surface is at rest with respect to it. As molecular collisions become less frequent,
the fluid adjacent to the spacecraft surface can acquire some tangential velocity
with respect to it. This intermediate regime, 0.01 < Kn < 1, is the transitional flow
regime. Finally, as the effects of molecule-molecule collisions become insignificant
compared to those of spacecraft-molecule collisions, the free-molecular flow regime
with Kn > 1 is entered. In this regime molecules hitting the spacecraft reflect some-
where between specularly and diffusely with an energy that is somewhere between
their energy upon hitting the surface and the thermal energy of the spacecraft’s
surface temperature (Bird, 1994). Chemical reactions are also possible between the

spacecraft and impinging molecules.

The stated boundaries of the various flow regimes for Ma and Kn are not
absolute. A single value for Ma or Kn may be appropriate for most of the flow, but
there are always be some regions of the flow where local values of these dimensionless
numbers differ significantly from the mean value. The shape of the spacecraft has

an effect on precisely where these boundaries are.

The composition of the fluid is important in most flow regimes because it
affects the partition of energy between kinetic and internal (e. g. vibrational) modes
and how the disturbed fluid returns to thermodynamic equilibrium (Bird, 1994).
This, in turn, affects the transfer of momentum and energy between the spacecraft
and the fluid. There is also the possibility of chemical reactions in the disturbed
fluid which change its physical properties. The chemical and physical state of the
spacecraft can also be a factor. Chemical reactions between the spacecraft and the
fluid can affect the drag. Ablation or thermal expansion of the spacecraft can also
affect the drag. As an extreme example, consider a chocolate spacecraft. This will
rapidly melt upon entry. Real spacecraft are not made of chocolate, but none of

them have the idealized physical properties of a perfectly rigid, inert body.
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Continuum flow can be studied experimentally, such as in wind-tunnel ex-
periments (Intrieri et al., 1977), or in numerical models such as HALIS or LAURA
(Gnoffo et al., 1996). Rarefied flow is much harder to study experimentally (Blan-
chard et al., 1997). It can be modelled numerically with direct simulation Monte
Carlo (DSMC) methods (Bird, 1994). Comparison to Viking flight data and ground-
based validation experiments shows that the DSMC methods are accurate (Blan-

chard et al., 1997).

Pathfinder, which is a typical planetary lander or entry probe, experienced
free-molecular flow upon first entering the martian atmosphere. This was followed
by transitional flow, hypersonic continuum flow, and transonic continuum flow be-
fore its parachute was released for subsonic continuum flow (Magalhaes et al., 1999).
The drag coefficient was constant and about 2 in free-molecular flow. It decreased
during the transitional flow regime, but remained relatively stable during the hy-
personic continuum flow regime. It then changed more rapidly in the transonic
continuum flow regime. The opening of the parachute changed the aerodynamic
properties of the spacecraft immensely. The drag coefficient will behave similarly
for other typical atmospheric entries. I do not generalize further about the behaviour
of the drag coefficient during an atmospheric entry because it is so dependent on
the shape of the spacecraft. Discussions relevant to specific spacecraft can be found

in the literature.

5.6.2 Generalized Density Reconstruction

With the exception of the acceleration ratios option discussed earlier in Section 5.4.4,
this takes place separately from the trajectory reconstruction. It uses the results of

the trajectory reconstruction.

Putting the measured aerodynamic accelerations aside initially, the results

of the trajectory reconstruction, spacecraft mass, size, and shape, and an assumed
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profile of atmospheric density and pressure are sufficient information for the aerody-
namic database to predict the aerodynamic forces and torques at each point along
the reconstructed trajectory. The specific results that are used from the trajectory
reconstruction are spacecraft attitude with respect to the fluid velocity and the fluid

speed.

For the chosen direction, Equation 5.57 can then be trivially rearranged to

give:

- 2Fae7’o,p7’edicted
passumedAV2

Cestimated = (5.60)

which can then be solved to find Cestimateq at each point along the trajectory.
(' 1s a slowly varying function of the density and pressure of the atmosphere, so an
estimate of C' with an assumed density and pressure should be reasonably accurate
for the actual state of the atmosphere. Reintroducing the measured aerodynamic
accelerations, and treating C' as known and p as unknown, can provide an estimate

of atmospheric density at each point along the profile.

—2ma

estimated — 5.61
Pest ted OestimatedAV2 ( )

If this estimate agrees with the assumed value (which was needed to find
Clestimated ), then this density value is the actual atmospheric density. The estimated
value is typically closer to the actual value than the initially assumed value is, so the
assumed profile is replaced by the estimated profile and the whole process can be
repeated iteratively until assumed (input) and estimated (output) profiles converge
satisfactorily on the actual profile. Only a small number of iterations is usually
needed (Magalhaes et al., 1999). Magalhaes et al. (1999) chose a direction parallel
to the spacecraft’s velocity with respect to the atmosphere, the drag direction, and

used a constant value of C' in their first iteration. €' changes by only tens of percent
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for many orders of magnitude change in density and pressure. If ' were not such a

weak function of density and pressure, then convergence could not be guaranteed.

Similar procedures can be implemented for a total of three linearly indepen-
dent axes for both force balances and torque balances. This gives six estimates for
density at each point along the profile, all of which should be consistent. In practice,
uncertainties on the force balance along the axis closest to the flow direction are

much lower than on the others so this estimate is used alone.

This process is a pointwise solution procedure applied along the trajectory,
and does not integrate densities from one timestep to the next. The term A is a
reference area included to make ' dimensionless, but it may or may not be the most
obvious area one might select as a reference. Both A and m may change along the
trajectory due to, for example, heat shield ablation. If this is likely, then additional
measurements are needed to constrain these values during the atmospheric entry.

Modelling to predict Fj.,, should of course use the appropriate value of A.

5.6.3 Generalized Pressure and Temperature Reconstructions

An inviscid fluid, such as a planetary atmosphere, satisfies Euler’s equation

(Houghton, 2002):

Q

V,
_7p—9+(y-2)y+ =

g a—; =0 (5.62)

In the radial direction, the latter two terms that are due to atmospheric
motions are much smaller than the first two terms, and so the equation of hydrostatic

equilibrium applies (Holton, 1992):

L= ng, (5.63)
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Note that g, is negative. It is usually also assumed that the horizontal
extent of the entry trajectory is small enough that the pressure at a given altitude
does not change significantly over that extent. This is again neglecting atmospheric
motions. The equation of hydrostatic equilibrium can be integrated to yield a
pressure profile — but it needs a constant of integration. This can be ignored and
set to zero at high altitude, but the resultant pressure profile is an underestimate.
If the actual pressure at the top of the density profile is 1, then the actual pressure
n scale heights below is exp (n). If the estimated pressure at the top of the density
profile is mistakenly set to 0, then the estimated pressure n scale heights below
is exp (n) — 1. The fractional underestimate in the pressure n scale heights below
is therefore exp (—n). Two scale heights below the top of the density profile this

underestimate is 14%, four scale heights below it is reduced to 2%.

A better approach uses the fact that atmospheric density and pressure
are both changing exponentially with height, but atmospheric temperature is only

changing linearly with height. The ideal gas law is:

kg

Mmol

p=pT (5.64)

where T' is temperature, kg is Boltzmann’s constant, and m,,,; is the mean
molecular mass. With an ideal gas equation of state and the assumption that both
atmospheric mean molecular mass and temperature vary much more slowly with

altitude than atmospheric density does, one has:

d d
w2 (5.65)
P p
Substituting Equation 5.65 into Equation 5.63 gives:
pdp
— = pg; (5.66)

;dr B
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d(Inp)
dr

p = PYr (5.67)

This gives an estimate for the pressure at the top of the density profile,

where r = rg, that can be calculated from the density profile alone:

0 = (o) () % (1 ) (5.69

This can then be used as the boundary condition when integrating Equa-

tion 5.63 to get the pressure profile.

p0) = ol o) x (S )+ [ (569

Finally the derived density and pressure profiles can be substituted into

Equation 5.64 to give the temperature profile.

Modelling and the final reconstructed temperature profile can be used to
estimate how much uncertainty the isothermal and ideal gas assumptions intro-
duce into the constant of integration. More complicated equations of state can
be considered if desired, but planetary atmospheres are sufficiently rarefied when
first detected by current accelerometers that an ideal gas equation of state is very

accurate.

5.6.4 Error Considerations

The inaccuracies in the trajectory reconstruction affect the aerodynamic modelling
and contribute to errors in C'. However (' is also affected by intrinsic uncertainties
in the aerodynamic modelling. These uncertainties in ', in the trajectory recon-

struction (V), and in the measured accelerations then contribute to errors in the
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estimated value for p at each point along the trajectory. Errors in p are introduced
by the assumption of a static atmosphere, by uncertainties in p and by uncertainties
in the gravitational field at the inaccurately known position of each point along the
trajectory. Errors in T' come from uncertainties in the atmospheric composition,
p, p, and an assumed equation of state. As discussed in Section 5.7.3, errors in

temperature can be significantly less than those in pressure and density.

Direct measurements of atmospheric properties including density, pressure,
temperature, and wind velocity can improve the atmospheric structure reconstruc-
tion (Seiff and Kirk, 1977a), while mass spectrometer measurements of atmospheric

composition can yield an independent profile of atmospheric density (Nier and McEI-

roy, 1977).

5.7 Atmospheric Structure Reconstruction applied to Mars Pathfinder

5.7.1 The Importance of an Aerodynamic Database

Any atmospheric structure reconstruction depends heavily upon its aerodynamic
database. Since atmospheric density is inversely proportional to the force coefficient
for the chosen direction, relative uncertainties in density are greater than or equal
to those in the force coefficients. Aerodynamic databases are typically constructed
by a mixture of physical experiments, such as wind tunnel tests, and numerical
modelling on supercomputers. Both of these are expensive and time-consuming.
As discussed in Section 5.5.1, I did not use the Moss et al. (1998) and Gnoffo et al.
(1996) aerodynamic database for Pathfinder. Instead I used Figure 3 of Magalhaes
et al. (1999) which shows a profile of Cp as a function of altitude as appropriate to
their trajectory reconstruction. I scanned and digitized this figure, then used this
vertical profile of C'p as my aerodynamic database. If my trajectory reconstruction

has a different speed at a given altitude than theirs, then 1T am forced to use the
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value of C'p appropriate to their speed. This is a source of error, but since my
trajectory reconstruction is reasonably close to theirs, the major source of error is

in the crude scanning and digitization.

5.7.2 Results

As stated in the PDS file /document/edlddrds.htm, the spacecraft reference area,
A, is 5.526 m? and its mass, m, is 585.3 kg. These, the results of the trajectory
reconstruction, and my crude aerodynamic database are all that is needed to derive
the profile of atmospheric density. For the constant of integration in the equation
of hydrostatic equilibrium, I estimated the density scale height over the uppermost
10 km of the density profile and assigned this value to the altitude in the midpoint
of this range. [ used a spherically symmetric gravitational field and numerically
integrated the equation of hydrostatic equilibrium. Uncertainties due to the crude
aerodynamic database dwarf the neglected effects of higher order terms in the grav-

itational field.

The mean molecular mass assumed in the ideal gas equation of state, m,, .,
was 43.49 g mol~! in the lower atmosphere, and decreased with altitude as discussed

in Magalhaes et al. (1999) and tabulated in PDS file /document/edlddrds.htm.

As a function of the independent variable in the reconstruction, time, the
density, pressure, and temperature results, shown in Figures 5.6 — 5.8 are consistent
to within a few percent. When more usetully plotted against reconstructed altitude
in Figures 5.9 — 5.11, the density and pressure results are only consistent to 20% or
so. This apparent worsening of my results is due to differences between my profile of
reconstructed altitude versus time and that of the PDS. However, the temperature
versus reconstructed altitude results are still consistent to about 5%. Sudden jumps
in the difference between my results and the PDS results at 85 and 65 km altitude
occur at changes in accelerometer gain state. 1 believe that 1 and the PDS have

used different interpolation techniques to replace the corrupted second of data.
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Figure 5.6: The ratio of (PDS reconstructed density minus the results of this chapter
using the engineering entry state) to the PDS reconstructed density, plotted against
the independent variable time.
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Figure 5.7: As Figure 5.6, but pressure.
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Figure 5.9: The ratio of (PDS reconstructed density minus the results of this chapter
using the engineering entry state) to the PDS reconstructed density, plotted against
reconstructed altitude.
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5.7.3 (p = 2 Approximation

In sufficiently rarefied atmospheres, i. e. at sufficiently high altitudes, the motions
of atmospheric molecules are not affected by those of other molecules. In this
situation, atmospheric molecules below the spacecraft are dynamically unaware of
its impending arrival and are accelerated from near-zero thermal speeds to the
kilometre per second-scale entry speed of the spacecraft as they are physically swept
up by its passage. The spacecraft sweeps through a volume of atmosphere Av per
unit time. It accelerates the mass pAv of this volume to a speed v. The momentum
transferred by the spacecraft to the atmosphere per unit time is therefore pAv?.
This is the force exerted parallel to the velocity of the spacecraft with respect to
the atmosphere and so, by reference to Equation 5.57, C for this direction should
be 2. This is Cp, the drag coefficient. Cp does not change by orders of magnitude
during an atmospheric entry, only by tens of percent. This is many times less than
the acceleration and velocity, the other terms which change in Equation 5.57 to

affect the measurement of atmospheric density.

Cp = 2 might be used as a default aerodynamic database in the unfor-
tunate case where no aerodynamic information is available or when a very rapid
atmospheric characterization is required. I plot temperature as a function of recon-
structed altitude in Figure 5.12 using this approximation. The error increases from
about 4% (variable Cp) to about 8% (Cp = 2), which is a remarkably accurate
result considering how much time-consuming and expensive aerodynamic modelling
has been neglected. The fractional error in density, not shown, is equal to the neg-
ative fractional difference between the actual and assumed values of C'p. Gravity
is nearly constant over the altitude range of atmospheric entry, so pressure is effec-
tively proportional to the integral of density with respect to altitude. Since density
is inversely proportional to Cp, and Cp changes slowly with altitude, the ratio of
pressure to density is only slightly dependent on Cp. Using the ideal gas equation
of state, temperature is proportional to the ratio of pressure to density and also

only slightly dependent on C'p. Hence errors in Cp, which may be very important
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for the density or pressure results, cause the uncertainty in the temperature results

to increase by only a few percentage points.

Two effects are important in understanding why temperature is so weakly
dependent on C'p. Neither of them alone is sufficient. First, C'p varies by only tens
of percent during atmospheric entry. Second, temperature is proportional to a ratio

between an integration of C'5' over altitude and C5', not directly to Cp.

5.8 Conclusions

I have developed procedures to analyse accelerometer data for trajectory and atmo-
spheric structure reconstruction and outlined them in detail. Different approaches
to the problem of tracking spacecraft attitude have been compared and contrasted.
My trajectory reconstruction procedures have been verified on the Pathfinder en-
try. They have uncovered inconsistencies within the previously published work,
including the PDS archive. The iterative approach needed to obtain an accurate
atmospheric density profile and the pointwise nature of the procedure have been em-
phasized in my outline of the theory of atmospheric structure reconstruction. My
atmospheric structure reconstruction results have been verified on the Pathfinder
entry using a very crude aerodynamic database. The results for both the trajectory
and atmospheric structure reconstructions are good. A remarkably accurate profile
of atmospheric temperature may be obtained without any aerodynamic database

whatsoever.

As a service to the community, I have placed simplified versions
of my trajectory and atmospheric structure computer programmes online for
public use. Interested parties should contact the author, who will be
happy to provide them with further details. They are currently online at:
http://www.Ipl.arizona.edu/~withers/beagle2/. Currently the programmes assume
a spherically symmetric planet and gravitational field, use only a first order integra-

tion technique and model spacecraft aecrodynamics with constant C' and the head-on
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Figure 5.12: The ratio of (PDS reconstructed temperature minus the results of
this chapter using the engineering entry state and taking Cp = 2) to the PDS
reconstructed temperature, plotted against reconstructed altitude.
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or drag-only options. However it is my intent to further develop them for application

to upcoming planetary missions.
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