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CHAPTER 3

DEVELOPMENT OF A NOVEL “BALANCED ARCH” TECHNIQUE
FOR MEASURING WINDS

3.1 Introduction

The general circulation of any atmosphere is defined by the nature of the atmo-
spheric composition, pressure, temperature, and winds as functions of altitude,
latitude, longitude, time of day, and season (Zurek et al., 1992). Winds are im-
portant because they transport energy, momentum, condensable species, and radia-
tively important aerosols within an atmosphere (Holton, 1992). Most observations
of planetary atmospheres have been made by the remote sensing of electromag-
netic radiation. Atmospheric composition, pressure, and temperature all have a
direct effect on the transfer of radiation, and can be inferred from such observations
(Chamberlain and Hunten, 1987). Winds have only an indirect effect on radia-
tive transfer, so are less easily measured by such techniques. On all the planets,
predictions of wind speed and direction as a function of altitude, latitude, longi-
tude, time of day, and season are constrained by far fewer measurements than the

complementary predictions for other meteorological fields.

In this Chapter I develop a novel technique for measuring winds and apply
it on Mars. On Mars, lower atmospheric winds have previously been constrained

by several techniques:

(1) Cloud tracking on images from ground-based telescopes, Earth-orbiting

telescopes, and Mars-orbiting spacecraft have provided direct measurements of
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winds, but these do not have systematic latitudinal, longitudinal, and seasonal cov-

erage, do not strongly constrain the relevant altitude, and are restricted to daytime

only (Slipher, 1962; Mischna et al., 1998; Kahn, 1983).

(2) Observations of surface streaks and other aeolian geomorphological fea-
tures have provided direct measurements of average wind direction, but these do
not have systematic latitudinal and longitudinal coverage, do not extend above the
planetary boundary layer, do not have any temporal resolution, and reveal little

about the wind speed (Thomas, 1981; Greeley et al., 2000).

(3) Surface meteorology instruments, including the Viking seismometers,
have provided a record of wind speed and direction with very high temporal res-
olution over periods from a few months to a few Mars years, but they only exist
at three locations on the planet and do not extend above a couple of metres high

(Nakamura and Anderson, 1979; Zurek et al., 1992; Murphy et al., 2002).

(4) Vertical profiles of horizontal wind speed and direction were obtained
during the descent of the two Viking Landers to the martian surface by modelling
the effects of winds on the trajectory of the spacecraft. The profiles extend from
several tens of kilometres altitude to the surface. However, these measurements only
exist at two latitudes, longitudes, times of day, and seasons and are very challenging

to extract from the data (Euler et al., 1979).

(5) Much better spatial coverage comes from an indirect technique which
applies the gradient wind approximation to vertical profiles of pressure as a func-
tion of temperature derived from infra-red spectrometers (IRIS, IRTM, TES, and
THEMIS) in Mars orbit (Zurek et al., 1992; Smith et al., 2001). These have poor
spatial resolution and are restricted in their latitudinal/longitudinal /time of day
coverage by their orbit. For example, TES data only cover two times of day from

the sun-synchronous orbit of the Mars Global Surveyor (MGS) spacecraft.

Middle and upper atmospheric winds on Mars are less well constrained:
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(1) Observations of stellar occultations, such as the 1976 Epsilon Gem occul-
tation, reveal the oblateness of the martian atmosphere at about the 70 km altitude
level (Elliot et al., 1977; French and Elliot, 1979). Similar oblateness measurements
from the occultation of 28 Sag by Titan in 1989 were used to constrain wind speeds,
but this analysis has not been done for the Epsilon Gem/Mars occultation (Hubbard
et al., 1993).

(2) Ground-based spectroscopy with high spectral resolution can measure
winds by their Doppler effect on the frequency of emitted radiation (Lellouch et al.,
1991). Several groups have tried to make such measurements in the past decade, but
only one peer-reviewed paper has been published (Gurwell et al., 1993; Schmiilling
et al., 1999; Moreno et al., 2001). This bottleneck is due to the difficulty of process-
ing such measurements. Winds measured with this technique are line-of-sight only,

are restricted to the Earth-facing hemisphere, and have poor spatial resolution.

Theoretical models which predict winds in the upper atmosphere of Mars
are constrained by UV airglow measurements, radio occultations of the ionosphere,
and data from the Viking entry accelerometers, retarding potential analyzers, and
mass spectrometers as discussed in Bougher and Dickinson (1988) and Barth et al.
(1992). The underdeveloped state of our understanding of the physics and chemistry
of the martian upper atmosphere was highlighted by the recent Decadal Survey
recommendation for a Mars Upper Atmosphere Observer spacecraft (Belton, 2002).

In situ observations relevant to the dynamics of the martian upper atmo-
sphere have recently been made by the Accelerometer Experiment (ACC) on the
MGS spacecraft (Keating et al., 1998; Keating et al., 2001a; Keating et al., 2001b).
Once in orbit around Mars, MGS’s periapsis was lowered into the upper regions of
the atmosphere. The subsequent atmospheric drag from this aerobraking modified
the spacecraft trajectory more cheaply than the use of chemical propellant alone
could. The ACC measured the aerodynamic accelerations on the spacecraft during

an aerobraking pass. This information was used by the mission operations team in
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the hours after the aerobraking pass to plan modifications to the spacecraft’s trajec-
tory by changing the altitude of the next periapsis by small expenditures of chemical
propellant at apoapsis, to achieve the desired drag without exceeding heating rate
thresholds, and to guide it safely to the desired mapping orbit. The accelerome-
ter readings have been processed to generate two “profiles” of atmospheric density,
one for the inbound “leg” and one for the outbound “leg”, from each “aerobraking
pass” (Keating et al., 1998; Cancro et al., 1998; Tolson et al., 1999; Tolson et al.,
2000; Keating et al., 2001a; Keating et al., 2001b). An “aerobraking pass” refers
to a single traverse through the atmosphere from ingress to egress, a “leg” refers to
the inbound (pre-periapsis) or outbound (post-periapsis) portion of an aerobraking
pass, and a “profile” refers to data from one leg of an aerobraking pass. Unlike plan-
etary entry probes or landers such as Pathfinder, the flight path of MGS through the
atmosphere on each aerobraking pass is not near-vertical. The atmospheric flight
path extends down from a maximum altitude of approximately 160 km to periapsis
and then back out again, typically spanning several tens of degrees of latitude with
only small changes in longitude or local solar time (LST). The maximum altitude
is set by the need for the signal of the aerodynamic acceleration to exceed the in-
strument’s noise level. The duration of each aerobraking pass was on the order of a
few minutes, short compared to any dynamical timescale for changes in atmospheric
properties. In an attempt to keep terminology consistent between one-legged lander
entry data and two-legged aerobraking data, I use a “profile” of some type of data

to mean a single-valued function of altitude.

Aerobraking took place in two Phases, 1 and 2, separated by a hiatus
containing the Science Phasing Orbits (Albee et al., 1998; Albee et al., 2001). Phase
1 included orbits 1 — 201 from mid-September, 1997, to late March, 1998, and Phase
2 included orbits 574 — 1283 from mid-September, 1998, to early February, 1999.
At the beginning of Phase 1, Ly = 180°, periapsis occurred at 30°N and 18 hrs LST,
then moved northwards and earlier in the day to reach 60°N and 11 hrs LST at the
end of Phase 1, Ly = 300. One hour of LST equals 1/24 of a martian solar day
(sol), not 3600 seconds of elapsed time. At the beginning of Phase 2, during the
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next martian year at Ly = 30°, periapsis occurred at 60°N and 17 hrs LST, then
moved southwards and earlier in the day to cross 80°S at 15 hrs LST. Periapsis then
crossed over the south pole, moving through nighttime LSTs, and reached 60°S and
02 hrs LST by the end of Phase 2, Ly = 90°. When periapsis was near the south
pole, each aerobraking pass’s profile of atmospheric density spanned a large range
of LST and longitude. This is summarized in Figure 2.1. L, heliocentric longitude
or season, is 0° at the northern spring equinox, 90° at the northern summer solstice,

180° at the northern autumn equinox, and 270° at the northern winter solstice.

Data from the ACC is archived in the Planetary Data System (PDS) (Keat-
ing et al., 2001a). This dataset contains 1600 upper atmospheric density profiles
from 800 aerobraking passes. The only previous three atmospheric density profiles
are those of the Pathfinder and two Viking landers (Magalhaes et al., 1999; Seiff
and Kirk, 1977a). Collocated pressure profiles were derived from these three near-
vertical density profiles using the assumption that a pressure gradient and gravity
are the only forces acting on the atmosphere. This is a slightly more restrictive as-
sumption than the assumption of hydrostatic equilibrium. Hydrostatic equilibrium
requires that a pressure gradient be the only force acting in a vertical direction,
but permits additional forces, such as those due to atmospheric motions, acting in
other directions. An equation of state, appropriate for the independently known
atmospheric composition, such as the ideal gas law was used to derive collocated
temperature profiles from these density and pressure profiles. The temperature and
pressure data are generally more scientifically useful than the density data and I
have investigated whether temperature and pressure profiles can be derived from
the MGS ACC density profiles. The PDS archive includes the altitude of a con-
stant pressure level, 1.26 nbar, for both the inbound and outbound legs of each
aerobraking pass, so it might be thought that some useful information on how pres-
sure profiles can be derived would be present within the archive (Keating et al.,
2001a). However, the archive does not include any description of how this pressure

was calculated.
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Using techniques derived from these established assumptions for each leg
of each aerobraking pass, I derived two pressure profiles, inbound and outbound,
for each aerobraking pass from the density profiles. Since the two simultaneous
pressure profiles both terminate at the same periapsis position, they should be
consistent. If the two estimates of periapsis pressure are inconsistent, then the
pressure profiles cannot both be correct and I must examine the assumptions and
the data for errors. If the two estimates of periapsis pressure are consistent, then
the pressure profiles may or may not be correct. I found typical discrepancies of
50% between the two estimates of periapsis pressure on a given aerobraking pass,
significantly greater than the uncertainty in the discrepancies. Figure 3.1 shows
pressure profiles derived in this way for orbit P679. It has a discrepancy of about
30% between the two estimates of periapsis pressure with an uncertainty in this

discrepancy of about 1%.

A matching pair of legs, inbound and outbound, that comprise a single
aerobraking pass are required to reveal this problem with the pressure profiles. A
single leg, as is obtained for all entry probes, is insufficient. As I shall later show,
the problem originates in the non-vertical flight paths of each aerobraking pass. It
has less of an effect on profiles from typical entry probes with near-vertical flight

paths.

I attribute these discrepancies to the presence of horizontal pressure gradi-
ents, which are often associated with winds. These discrepancies are the motivation
for the aim of this chapter, which is to study theoretically the effects of winds
and horizontal pressure gradients on density profiles from aerobraking or similar

measurements.

3.2 Conservation of Momentum in an Atmosphere

P . »
a—f+(2-z)y+2ﬁxy+ vi (0 —V) + -V x (¥ xv) = —Vp+ges (3.1
P P —
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Figure 3.1: Pressure profiles derived for orbit P679 using established assumptions.
The inbound profile is the solid black line, the outbound profile is the solid grey
line. 1o uncertainties for both are shown as dotted lines.
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Equation 3.1, where v is the neutral wind velocity, ¢ is universal time, £ is
the planetary sidereal rotation rate, v,; is the neutral-ion collision frequency, V, is
the ion velocity, p is atmospheric density, 5 is the molecular dynamic viscosity, p is
atmospheric pressure, and geys; is the sum of gravitational and centrifugal acceler-
ations, conserves momentum in an atmosphere in a planet-fixed rotating reference

frame. This equation is discussed in e. ¢g. Holton (1992) or Chamberlain and

Hunten (1987).

The first term on the left hand side of Equation 3.1 is the acceleration term,
the second is the advective term, the third is the Coriolis term, the fourth is the
ion-drag term, and the fifth is the viscous term. The first term on the right hand
side of Equation 3.1 is the pressure gradient term and the second is the gravitational
term. In a static (v = 0, V; = 0) atmosphere, the left hand side of Equation 3.1
is zero and pressure gradient forces are exactly balanced by the effective (including

centrifugal) force of gravity.

gei = Ygrav — Q X (Q X E) (32)

Equation 3.2 defines gess. The true gravitational acceleration, dependent
only on the mass distribution within the planet, is gyrq40, the centrifugal acceleration
is =0 x (2 x r), and r is the position vector measured from the centre of mass of
the planet. For a spherically symmetric planet, gy,q, is directed radially. For a real
planet, the spherical symmetry may be broken by terms of higher degree and order.
The largest contributor to gess is always the spherically symmetric term, —GM/r?

where (G is the gravitational constant, M is the mass of the planet and r = |r|

3.2.1 Simplest Approximation to Equation 3.1

The radial component of the acceleration due to g.ss is always much greater than

the two perpendicular components; if it were not, then the planet’s atmosphere
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would rapidly escape into space. Maxwellian molecular speeds in a planetary at-
mosphere are simply too small for the velocity-dependent terms on the left hand
side of Equation 3.1 to balance this large acceleration, so the radial pressure gradi-
ent term must balance it. This reasoning leads to the following approximation to

Equation 3.1:

—1dp —-GM
0= o +—3 (3.3)
—10p
—10dp

where 6 is colatitude and ¢ is east longitude. This spherical polar coordinate
system is centred on the planet’s centre of mass. Using the known GM, a boundary
condition, and a radial profile of density as a function of altitude, Equation 3.3 can
be integrated to obtain a collocated profile of pressure. The boundary condition,
which is usually applied at the top of the atmosphere, is usually the assumption of
an isothermal atmosphere. The pressure at the top of the atmosphere can then be
related to the observable density scale height via p = pgH. FErrors in the derived
pressure at this high altitude have a negligible effect on the pressure profile at
lower altitudes since pressure has an exponential dependence on altitude. From
the independently known atmospheric composition as a function of altitude, an
equation of state can be derived and used with the pressure and density profiles to

yield a collocated profile of atmospheric temperature.

Slightly more sophisticated versions of this established technique have been

successfully applied to near-vertical entry profiles from many spacecraft, as discussed
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in Magalhaes et al. (1999). However, as discussed in Section 3.1, it fails when
applied to the MGS ACC density profiles. A new formulation must be found,
one that allows for the non-vertical flight path of the spacecraft and uses the new
constraint of two simultaneous profiles. Similar issues were addressed by Seiff et al.
(1979) in their analysis of the simultaneous entries of the Pioneer Venus probes. To
identify which terms in Equation 3.1 are most important in this situation I perform

a scale analysis.

3.2.2 Scale Analysis on Equation 3.1

I work in a spherical polar coordinate frame, so my latitudes and longitudes are
planetocentric, rather than planetographic or some other system. I do not use
altitude referenced to an equipotential surface, which is the vertical coordinate in
the PDS ACC data archive, because of a desire to be rigorous and correct in my
vector algebra (Keating et al., 2001a). The change in unit vectors with position
would be very complicated to express analytically if a reference surface without a
simple form in a Cartesian coordinate system (such as a fourth degree and order
equipotential surface) was used. Many atmospheric science applications use pressure
as a vertical coordinate, because this can simplify the study of certain phenomena
(Holton, 1992). However, this is only true when pressure is well-known. Since the
ACC data here are known as a function of position, unlike, e. g., remotely-sensed
TES vertical profiles of temperature which are known as functions of pressure, |
use a more appropriate “position-centric” coordinate system. Doing so introduces

curvature terms as discussed in Appendix C.

The three components of Equation 3.1 become:

v, : vy + v;
ot + (v.V) v, + 2 (=Qvy sin b)) — b . ¢ _
—10dp

75 + Geffr — Vni (vr - ‘/i,r)
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dvg Vv, v?
5 + (v.V)vg 4+ 2 (—Qvy cos ) + i rtai@ = (3.7)

—10p 7]821)9
e ni _‘/z
ps ae—l-gffe—l- 57 — Vpi (vg 0)

8v¢

51 + (v.Y) vy + 20 (cos Bvg + sin v, ) + UgUr % = (3.8)
rtan
-1 odp U 0%y
pr81n08¢+geff¢+ 82 l/’rm(v(b_‘/z,(b)
where
0 g 0 0
(0Y) = v, + (3.9)

o 7“89 rsinf d¢

The viscosity term is not included in its full complexity. Only the dominant
component, as detailed in Appendix D, is included in Equations 3.7 and 3.8. The
dominant viscous component in Equation 3.6 is not included, because the work
of Section 3.2.1 and later in this Section show that Equation 3.6 is completely
dominated by the balance between gravity and the pressure gradients. The g,y
terms are known a priori, but estimates must be made for the other terms. I do

not estimate the pressure gradient terms: instead, I treat them as unknowns.

—GM B BGM <Tref

geffﬂ’ == TQ 2

2
) \/g<2cos 0 — —) Cao + r?sin? 6 (3.10)

r r

3GM [r1,.6\? ) - .
Jeffo = —— <r f) V5 sin 0 cos 0Cs0 + Q2 sin 6 cos 6 (3.11)
r

r

Gersp =0 (3.12)
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Equations 3.10 — 3.12 contain an expansion of the gravitational field to sec-
ond degree and order. r,.s is a reference distance and Cyo is the first normalized
zonal harmonic coefficient. First degree and order coefficients are zero when the
centre of mass is at the origin of the coordinate system. r..s is often, but is not
required to be, the mean equatorial radius of the planet. Cy has meaning only in
association with this reference radius. The factor of v/5 comes from the normaliza-
tion convention which is discussed in Section 4.1. T work up to second degree and
order so that my results do not become dependent on perfect spherical symmetry
in the gravitational field, but do not go to higher order because those terms are

negligible.

Typical time and length scales for changes in the neutral wind velocity are:

% ~ % (3.13)
% ~ (3.14)
%% ~ rij (3.15)
%a% ~ rif (3.16)

where H is an atmospheric scale height. Strictly, the horizontal length scale
should be the radial distance to the region of interest. This might be significantly
larger than than r,.r, which is most probably the planet’s equatorial radius. In

the cases to be discussed here, either the radial distance to the region of interest is
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close to r,.s or (o ise negligible and 1 can use the radial distance to the region of
interest as r,.s. These are discussed at the appropriate times. I replace each term
in Equations 3.6 — 3.8 with its likely magnitude (Equations 3.17-3.19), see which
terms are dominant and which are negligible, then find reasonable approximations

to these Equations using only the dominant terms.

L PR EULL L (3.17)
27 H Tref  TrefsSing '
. vi | v
2Quvg sin b + + —— F vpi (v, — Vi) =
Tref Tref
10, GM 3GM 3 1\ -
_op : 2—\/5 (— cos* f — —) Cho 4 rres Q% sin® 0
por Tl Tres 2 2
vefl  vvg vevg Vg Ug (3.18)
27 H Tref  Trefsing '
2
VgUy Vg
vy cos O + Py + Fog tan 0 + Vi (vg 0)
10 3GM =
p—ra—z + ﬁ\/g sin # cos 0C5q + rrefQQ sin f cos 0 + ;7;;02
) Vv VeV Vg Vg
+ + + + (3.19)

27 H Tref  Trefsinf

VU VyVg
b i (v — Vig) =
Tref  Treftanf

2Qvg cos 8 + 2Qv, sin 0 +

L dp | nug
prsinf d¢  pH?

The ion-drag term only operates if the magnetic field is strong enough to
control the motion of the ions (Rees, 1989). If the ion gyrofrequency, f,yr0, is
greater than the ion-neutral collision frequency, v;,, then the motions of the ions
are controlled by the magnetic field, else they are not. The ratio of the ion-neutral

collision frequency (frequency of collisions of neutrals with a given ionic particle)
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to the neutral-ion collision frequency (frequency of collisions of ions with a given
neutral particle) equals the ratio of the neutral number density to the ion number
density, so the ion-neutral collision frequency is greater than the neutral-ion collision

frequency.

1 qzonB

L 3.20
Jowro = 5 — (3.20)

3kT;,,
Vip = nneutralAneutral (321)

Mion

0 ton 1 B 1

Jovro _ 4 (3.22)

Vin 27 \Y ?)k nneutralAneutTal mionTion

where ¢;,, 1s the magnitude of the ionic charge, typically the same as an
electron, B is the magnetic field strength, m;,, is the ion mass, n,cyutrq1 1s the number
density of neutral particles, A, ur01 1 the cross-sectional area of a neutral particle,
k 1s Boltzmann’s constant, and T},, is the temperature of the ions. If this ratio is
greater than unity, then V; differs from the neutral wind velocity v and the ion-drag
term is non-zero. V,; can be estimated by assuming that the ions remain fixed on

field-lines and rotate with the planet.

I perform this scale analysis for Venus, Mars, and Titan. At Venus, the
Orbiter Neutral Mass Spectrometer (ONMS) of the Pioneer Venus Orbiter (PVO)
measured density profiles that, like the MGS ACC, descend into and rise out of
the atmosphere (Niemann et al., 1980). The compositional information from this
instrument has been analysed in detail, but its dynamical implications have been
less well-studied (Kasprzak et al., 1993). Relevant Mars observations come from
the aerobraking of MGS, Mars Odyssey (2001 — 2002), MRO (planned for 2005 —

2006) and, depending on its operational usage, the Nozomi mass spectrometer which
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arrives at Mars in 2003 (Lammer et al., 2000). At Titan, Cassini’s lon Neutral Mass
Spectrometer (INMS) will measure density profiles analogously to PVO at Venus
(Kasprzak et al., 1996). It is likely that similar data exist for Earth.

Now I must estimate the magnitude of each of these terms using values
appropriate for the planet and dataset in question. I consider each advective term
in the equations separately, unlike e. ¢. page 39 of Holton (1992). I do this in
order to consider vertical, zonal, and meridional terms separately for maximum

understanding of the force balances. Relevant parameters are listed in Table 3.1.

3.3 Mars Scale Analysis

Order of magnitude estimates of the parameters in Equations 3.17 — 3.19 for ACC
data from MGS aerobraking are given in Table 3.1.

In this case, the radial distance to aerobraking altitudes of 100 km is not
significantly different from r,.s for the gravitational field. I can use the gravitational

field’s r,.s as the lengthscale for some of the dynamical terms, as discussed in

Section 3.2.2.

The ratio of f,,, to v, is ~ 0.1, so the ion-drag term has no effect. I
later show that even if this ratio is of order unity, then the ion-drag term is still

negligible.

3.3.1 r component

The first row of Table 3.2 shows the magnitude of each term from Equation 3.17.
The dominant term is the 3.73 m s gravitational term. The known contributions
to the gravitational effects from Cyy and the centrifugal term are much smaller. The
largest dynamical term on the left hand side of Equation 3.17 is the 1/ sin  part of
the advective term at polar latitudes. Only when 6 < 4.5° x 1072 does this term
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Parameter Venus Venus Mars Titan
(day, COz) (night, O)
GM (m? s™?) 3.2E14 [1]  3.2E14 [1] 4.3E13 [1] 9.0E12 [1]
Cao (dimless) -2.0E-6 [2] -2.0E-6 [2] -8.8E-4 [1] ?
Q (rad s71) 1.2E-8 [1] 1.2E-8 [1] TE-5 [1] 4.6E-6 [12]
Fref (M) 6.2E6 [1,3] 6.2E6 [1,3] 3.4E6 [1] 3.5E6 [11]
H (m) 5E3 [3] 5E3 [3] 1E4 [8] 8E4 [12]
v, (ms™h) 1 [4] 1 [4] 1 [7] 1 [13]
vg (ms™1) 5 [5] 5 [5] 30 [7] 20 [13]
vy (ms™h) 100 [5] 100 [5] 100 [7] 100 [13]
n (kg m~'s7')  1.0E-5 [6] 1.1E-5 [6]  1.0E-5 [6] 1.3E-5 [12]
p (kg m™?) 5E-10 [3] 2E-11 [3] 1E-9 [8] 8.5E-11 [12]
Gion (C) 1.6E-19 1.6E-19 1.6E-19 1.6E-19
B (T) <3E-10 [1] <3E-10 [1] 1E-6 [9] <1.6E-9 [10]
Neutral (M) 8E15 [3] 5E14 [3] 1E16 [8] 1.9E15 [12]
Apeutrar (m?) 1E-18 1E-18 1E-18 1E-18
Mion (kg) 7.3E-26 [3] 2.TE-26 [3] 7.3E-26 [1] 4.5E-26 [1]
Tion (K) 280 [3] 110 [3] 200 [7,8] 200 [12]

Table 3.1: Relevant Parameters. References are: [1] Lodders and Fegley (1998);
[2] National Space Science Data Center (2003); [3] Niemann et al. (1980); [4]
Kerzhanovich and Marov (1983); [5] Schubert (1983); [6] Lide (1994); [7] Bougher
et al. (1990); [8] Keating et al. (2001a); [9] Purucker et al. (2000); [10] Neubauer
et al. (1984); [11] Yelle (pers. comm., 2002); [12] Rishbeth et al. (2000); [13]
Miiller-Wodarg et al. (2000)
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approach 10% of the dominant 3.73 m s™% gravitational term. So at all latitudes
Equation 3.6 is well-approximated by:

—1 0, —GM
_zlop

0= - (3.23)

7@7‘ r

3.3.2 f component

The first row of Table 3.3 shows the magnitude of each term from Equation 3.18.

The two sinf cos @ terms contributing to g.ss¢ are known a priori. The
latitude-independent viscous term is not. The dominant term on the left hand side
of Equation 3.18 depends on latitude as shown in Table 3.4. The competing terms
are the largest latitude-independent part of the advective term, the 1/sin 6 part of
the advective term, the cosf Coriolis term, and the 1/tan # part of the curvature

term. The competing terms are symmetric about the equator.

The Coriolis term, 2Quv, cos ), is dominant, but only by factors of a few,
between 6 = 30° and 6 = 60°, corresponding to latitudes between 30° and 60° in
either hemisphere. The poleward limit is set by the curvature term, vi/rref tané.
The viscous term is not many times smaller than the Coriolis term, but I feel
that I have underestimated the vertical lengthscale for changes in wind velocity by
equating it to the scale height. There is no compelling reason for many reversals
in the wind speed over the many scale heights-extent of the upper atmosphere.
This reasoning suggests that neither the viscous nor largest latitude-independent
part of the advective term are as large as I have outlined above. At mid-latitudes

Equation 3.7 is well-approximated by:

19
—2Quy cos b = ﬁa_z + Gefs0 (3.24)
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(A) Object u vt ot TT:;»:;M
Mars  LIx 107  10* 885 x 107° 29:x10=
Venus  1.2x 107 2.0 x 107* 8.1 x 1077  Lex1o=
Titan 7.3 x 1077 1.3x107° 5.7 x 1076 29x107

U2
(B) Object |2Qv, sin 0| Tvgf - ¢f
Mars 0.014sin 0 2.6 x107* 2.9 x 1073
Venus 24 %107 %sinf 4.0x107% 1.6 x 1073
Titan  9.2x 107*sinf 1.1 x107* 2.9 x 1072
(C) Object |15 (=L22) g
Mars o ()] 83
Venus msl_2 (‘T}g—f) 8.3
Titan |15 (S122)]| 6.6 x 107

(D) Object %\/5 (% cos? ) — %) C rref 2% sin® 0
Mars 0.015 (% cos? ) — %) 0.017sin? 4
Venus 7.4 x 1075 (% cos? f — %) 8.9 x 107'9sin? 6
Titan 3.0C <% cos? 6 — %) 7.4 x 107°sin? 0

Table 3.2: Scale Analysis of Equation 3.6. Units are m s™2. Each term in (A) and
(B) corresponds to a term on the left-hand side of Equation 3.17, (C) and (D) to

the right-hand side.



() Objeet  [32]  [m  [m [
Mars 33 x 107 3 x 107 2.7 x (0% 885x10
Venus 9.5 x 107 1.0 x 1075 4.0 x 1076 81x107
Titan  1.5x 1075 2.5 x107* 1.1 x 107* 2000

U2
(B) Object |2Qv, cos 0] % - fan@
Mars 0.014cosf 8.8 x 1076 20—
Venus 2.4 x 107%cosf 8.1 x 1077  L6x107
Titan 9.2 x 107*cosf 5.7 x 1076  29x10%
(C) Object msl_Q ;—:g—g ?;%]\f 5 sin 0 cos 0C4
Mars msl_2 ;—:g—z 0.0225sin  cos
Venus msl_2 ;—:g—z 1.1 x 10~*sinf cos @
Titan msl_2 ;—:g—z 4.4C5 sin 0 cos 0
(D) Object  |r,.;Q?sin @ cos b e
Mars 0.017sin @ cos @ 3x 1073
Venus 8.9 x 107%sin f cos § 4.0 x 107* (day)
or 1.1 x 107! (night)
Titan 7.4 x 107° sin 6 cos 4.8 x 1074
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Table 3.3: Scale Analysis of Equation 3.7. Units are m s™2. Each term in (A) and
(B) corresponds to a term on the left-hand side of Equation 3.18, (C) and (D) to

the right-hand side.



6 (degrees) % TT:?Z;’M ‘ |2Qv, cos 0] Tre:%ané,
10 3.6E-3 5.1E-3 0.014 0.017
20 3.6E-3 2.6E-3 0.013 8.1E-3
30 3.6E-3 1.8E-3 0.012 5.1E-3
40 3.6E-3 1.4E-3 0.011 3.5E-3
50 3.6E-3 1.2E-3 9.0E-3 2.5E-3
60 3.6E-3 1.0E-3 7.0E-3 1.7E-3
70 3.6E-3 9.4E-4 4.8E-3 1.1E-3
80 3.6E-3 9.0E4 2.4E-3 5.2E-4

Table 3.4: Dominant Terms in Equation 3.18 for Mars case. Units are m s™°.

2
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If geostrophic balance held in the upper atmosphere, this equation would
be the same. If I desired to push back the poleward limit, I could also include the

vi/r tan 6 curvature term in Equation 3.24 and have a quadratic in vy for the left

hand side.

Returning to the ion-drag term, I decided to estimated the magnitude of
the ion-drag term in Equation 3.18 as if the gyrofrequency criterion were satisfied.
I set v;, equal to f,y,, then calculated v,; from the ratio of ion and neutral number
densities. The peak ion number density is about 10" m™ at an altitude of 140
km in the example shown in Bougher et al. (2001). This corresponds to a neutral
mass density of about 1072 kg m™ or number density for CO; of 10'® m™ in the
MGS ACC PDS data. With these numbers, the ion-drag term is still two orders of

magnitude smaller than the Coriolis term.

3.3.3 ¢ component

The first row of Table 3.5 shows the magnitude of each term from Equation 3.19.

The largest latitude-independent term on the left hand side of Equation 3.19
is the 0.01 m s™2 v,0v,/dr part of the advective term. At polar latitudes the
1/sin @ part of the advective term is comparable to this. The viscous term is
also comparable at all latitudes. The latitude-independent term is dominant for
latitudes equatorward of 73°, and at equatorial and mid-latitudes Equation 3.8 is

well-approximated by:

dvy,  —1 Op 0%,
o T rpsin @ d¢ + p Or? (3:25)

If my earlier comments about the correct vertical lengthscale being greater
than a scale height are correct, then several other terms should probably be included.

However, since I am about to neglect this whole equation, I do not investigate that.
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U¢,Q

(A) Object o e % Trzfziqani
Mars 1.1 x107? 0.01 8.85 x 107* 2850
Venus 1.9 x 1077 2.0 x 1072 8.1 x 107>  L&x1o=
Titan 73 x107° 13 x107% 5.7x10™* _2'9;;1112_3

(B) Object |2Qvg cos 0] |2Qv, sin 0| % 7”:?::110
Mars 42 %102 cosf 1.4 x107*sinf 2.9 x 1075 88x107
Venus 1.2x107"cosf 2.4 x107%sinf 1.6 x 107° 78'1t$3_5
Titan 1.8 x 107 cosf) 9.2 x 10 sinfh 2.9 x 107 3Ix107

(C) Ob‘]eCt pr_si1n€ g_f; ;7;1[452
Mars pr_silnﬁg_i L x 10_2
Venus —pr_silnﬁg_f; 8.0 x 1072 (day) or 2.2 x 10° (night)
Titan L2 2.4 x 1073
prsinf 9¢

Table 3.5: Scale Analysis of Equation 3.8. Units are m s

Each term in (A)

and (B) corresponds to a term on the left-hand side of Equation 3.19, (C) to the

right-hand side.
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3.3.4 Approximate Equations

Between 6 = 30° and 6 = 60° Equations 3.6 — 3.8 can be approximated by:

—1dp —-GM
S 2
0=t (3.26)
—10dp
—2Quy cos § = E% + Gess0 (3.27)
o 20 =L Op (3.28)

r  rpsinfde

The dynamical terms on the left hand sides of Equations 3.27 and 3.28
have about the same magnitude — 0.01 m s™2. Since MGS collected data from
a sunsynchronous, near-polar orbit, changes in latitude during a pass are much
greater than changes in longitude — at least in the mid-latitudes considered here.
On orbit P750 for example, MGS travelled 30° in latitude and 4° in longitude.
Even allowing for the effects of the sinf in the denominator of Equation 3.28,
changes in pressure along an aerobraking pass are dominated first by changes in
vertical position over changes in horizontal position, then by changes in latitude
over changes in longitude. Effects of changes in longitude and Equation 3.28 itself
can be neglected when deriving pressure profiles from MGS ACC density profiles.

The Coriolis term in Equation 3.6 also has a magnitude of 0.01 m s™2%.

However,
since its contribution to the pressure depends on the radial distance travelled, it has
a much smaller effect on the total pressure than the Coriolis term in Equation 3.27

and can be neglected from Equation 3.26.

The general conservation of momentum equations are Equations 3.6 — 3.8.
The simplest approximation to them are Equations 3.3 — 3.5. The simplest approx-
imation to them that is useful for analysing MGS ACC data is:
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—10 —GM
_zlop

0= 3.29
p Or r? (3:29)
—10dp
—2Qvg4 cos O = E% + Gesto (3.30)

The 6 component of these equations is in geostrophic balance. The atmo-
sphere itself is not in geostrophic balance, because Equation 3.28 is not dominated
by the Coriolis force. I call this situation “quasi-geostrophic” balance. The only
unknown quantity affecting the horizontal pressure gradient is the zonal wind, vg.
So, in principle, the horizontal pressure gradients that caused the inbound and out-
bound estimates of periapsis pressure to differ can be used to solve for vs. This
solution then gives self-consistent pressure and temperature profiles. I later outline

a method for doing this in Section 3.7.

3.4 Venus Scale Analysis

Pioneer Venus Orbiter collected many neutral mass spectrometer measurements
on passes through the upper atmosphere of Venus. These can be considered as
density profiles. As Table 3.1 shows, there are significant differences between the
dayside and the nightside of Venus’s upper atmosphere. The dayside atmosphere is
dominated by COj and has a significantly higher density than the colder nightside
O atmosphere (Niemann et al., 1980).

In this case, the radial distance to periapsis altitudes of 150 km is not
significantly different from r,.s for the gravitational field. I use the radial distance

to periapsis altitude as r,.¢, as discussed in Section 3.2.2.

The ratio of f,,r, t0 iy is ~ 3 x 1075 for the Venus dayside and ~ 1 x 1073

for the nightside, so the ion-drag term has no effect in either case.
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3.4.1 r component

For both the dayside and nightside parameters, the second row of Table 3.2 shows
the magnitude of each term from Equation 3.17. The dominant term is the 8.3 m
s72 gravitational term. The known contributions to the gravitational effects from
(' and the centrifugal term are much smaller. The largest latitude-independent
term on the left hand side is negligible and the largest latitude-dependent term only
approaches 10% of 8.3 m s™% gravitational term when # < 1.1° x 107>, So at all
latitudes Equation 3.6 is well-approximated by:

—10p —-GM
0= —L4

— (3.31)

3.4.2 60 component

The second row of Table 3.3 shows the magnitude of each term from Equation 3.18.
This does vary between day and night. The dominant unknown terms are the
1/ tan # curvature term and the viscous term at effectively all latitudes. Equation 3.7

is well-approximated by:

vs_ _ Zl0p 0%
rtand  pr 00 p Or?

(3.32)

3.4.3 ¢ component

The second row of Table 3.5 shows the magnitude of each term from Equation 3.19.
The dominant unknown term is the viscous term at effectively all latitudes. Equa-

tion 3.8 is well-approximated by:

-1 9p nd*v,

- pr sin 6 96 p Or?

(3.33)
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3.4.4 Approximate Equations

For both dayside and nightside, Equations 3.6 — 3.8 can be approximated by:

—1dp —-GM
= —— .34
0=t (3.34)

2 1A 2
Y% :_1@ 1 07ve (3.35)
rtan@  pr 06 ~ p Or?

-1 0 0?

P12 % (3.36)

Ozprsinﬁa_qﬁ p Or?

The # and ¢ components of the conservation of momentum equations are
dominated by the effects of viscosity in terms of analysing either the nightside
or dayside PVO data. Observed horizontal pressure gradients could, in principle,
be related to the second derivative of horizontal wind speed, but this is not a

particularly interesting measurement.

Since it is easier to relate horizontal pressure gradients to winds in the Mars
and Titan cases than in the Venus case, I do not investigate the Venus case any

further.

3.5 Titan Scale Analysis

Cassini will pass through the upper atmosphere of Titan on numerous occasions
during its mission. Using a neutral mass spectrometer like PVO, it will also measure

density profiles.

In this case, the radial distance to periapsis altitudes of 1000 km is sig-

nificantly different from the planetary radius. Since Cy is not known, I use the
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radial distance to periapsis altitude as r,.s in Equations 3.6 — 3.8, as discussed in

Section 3.2.2

The ratio of f,yr to iy is ~ 1 x 1072 for Titan, so the ion-drag term has

no effect.

3.5.1 r component

The third row of Table 3.2 shows the magnitude of each term from Equation 3.17.
The dominant term is the 0.66 m s~% gravitational term as long as Cy is not
unfeasibly large. The largest latitude-independent term on the left hand side is
negligible and the largest latitude-dependent term only approaches 10% of 0.66 m
s™% gravitational term when § < 2.5° x 107°. So at all latitudes Equation 3.6 is

well-approximated by:

—1dp —-GM
= ——" 4
p Or r

(3.37)

3.5.2 f component

The third row of Table 3.3 shows the magnitude of each term from Equation 3.18.
(a0 will be measured by Cassini at the same time as the density profiles, so the
dominant unknown term is the 1/tan # curvature term for all latitudes more than

20 degrees away from the equator. Equation 3.7 is well-approximated by:

v _ 10p
rtanf  prof

(3.38)
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3.5.3 ¢ component

The third row of Table 3.5 shows the magnitude of each term from Equation 3.19.
The dominant unknown terms are two parts of the advective term and the viscous

term. FEquation 3.8 is well-approximated by:

Jvg N vy vy  —1 8_p 282%
Or  rsinf 90  prsinfd¢  p Or?

(3.39)

v,

3.5.4 Approximate Equations

Equation 3.39 is quite intractable. However, some of Cassini’s orbits will be suffi-
ciently close to polar that the change in pressure due to changes in longitude will

be negligible. In those cases, Equations 3.6 — 3.8 can be approximated by:

—1dp —-GM
== 4
0 p Or + r? (340)
v; 10
¢ p
= —— 41
rtand  proé (341)

Since Equation 3.41 is similar in form to the case of cyclostrophic balance,

I call this situation “quasi-cyclostrophic” balance.

3.6 Summary of Simplified Equations

For each of these three cases, the approximation to the ¢-component of Equation 3.1
(Equation 3.8) contains spatial derivatives of the wind velocity. It is much easier to

deal with equations which contain the undifferentiated wind speed, so I only consider
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near-polar orbits for which the change in pressure along a leg due to changes in

longitude are negligible compared to those due to changes in latitude.

For the quasi-geostrophic case of Mars, my approximate equations are:

19p  GM
2 42
p or r2 (3.42)
1 dp
2Qvy cosf = p_T% — effh (3.43)

For the quasi-cyclostrophic case of Titan, my approximate equations are:

1gp  GM

T2

py i (3.44)

vi :i@—g 4
rtand  proé 7

(3.45)

The importance of latitudinal changes in pressure can be gauged by com-
paring the inbound and outbound estimates for periapsis pressure where these esti-
mates assume that pressure gradients and gravity are the only forces acting. If they
are identical, then latitudinal changes in pressure are negligible. If they are very
different, then latitudinal changes in pressure are significant. I define F as the ratio
of the difference of these two periapsis pressure estimates to their mean. £ = 0 cor-
responds to the case of negligible latitudinal effects, £ # 0 corresponds to the case
of significant latitudinal effects. Appendix E outlines a method for estimating £,
with some rather sweeping assumptions to deal with the effects of changing latitude
on the trigonometric terms. The results are that £ ~ 0.2 for the MGS ACC case
at Mars and £ ~ 0.05 for the Cassini INMS case at Titan. The martian estimate is
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similar to my measurement of £/ ~ 0.5 in Section 3.1. Detecting this effect on Titan
in the near-polar orbits of the Cassini data might be possible, because the INMS
instrument has high performance characteristics, but the ever-changing geometry

of the flybys will be a major complication.

3.7 “Balanced Arch” Technique for Estimating Wind Speed

In the quasi-geostrophic balance case, the zonal wind speed can be estimated as
follows. The conservation of momentum equations between § = 30° and 6 = 60°

are approximated as:

o _ 3.46
5y = PYeis. (3.46)

d
a—z = pryess.o + 2prQuy cos O (3.47)
Unknowns are vy and p as functions of r and 0. A zeroth order estimate of

periapsis pressure from the inbound density profile, neglecting winds, is:

pert pers
/ pYefsrdr + prgesredt (3.48)

niry entry

Where the integration path is along the flight path. If vy is known, this
estimate can be improved so that it gives the correct periapsis pressure by adding

it to an offset term:

/pm 2Qprvg cos 6d6 (3.49)

niry
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Similar expressions exist for the outbound leg, with exit replacing entry.

If T assume that vy is uniform, then it can be moved outside the integration

and the offset term becomes:

Vg /perZ 2Qpr cos 0db (3.50)

niry

Periapsis pressure is therefore given by both the following:

pers pers peri
/ pYesfrdr + / prgessodd + vy / 2Qpr cos Bdo (3.51)
entry entry entry
pert pert pert
/ pYes frdr + / prgessodd + vy / 2Qpr cos 0db (3.52)
ertt extt ertt

Equating these two expressions and rearranging them to solve for vy gives:

(S, pges podr + [2505, praessod0) — (JI5 pgessadr + [75 praessadb)
P90 pr cos 0dO — [P 2Qpr cos OdO

exit entry

Vp = (3.53)

Which can be solved for vy using the density profiles and . This solution
for vy represents a characteristic zonal wind speed in the region spanned by the are-
obraking pass. It is affected by all the neglected terms omitted from Equations 3.29
— 3.30. T call this result the “derived zonal wind speed” to emphasize that it is

averaged over an unrealistically large spatial extent.

This technique, as currently implemented, satisfies an integrated version of
Equation 3.30 and gives a single estimate of v4 for the entire pass. By comparing
latitudinal pressure gradients at every altitude on the pass and using the uninte-
grated Equation 3.30, a vertical profile of zonal wind speed can be derived. I leave

this for future work.
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With this zonal wind estimate, pressure profiles which are consistent at
periapsis can be derived by substituting the value for v4 into Equations 3.29 — 3.30
and then integrating in both r and # with the usual boundary condition at the top

of the atmosphere.

Uncertainties on the zonal wind estimate are calculated from the formal
uncertainties in the various terms in Equation 3.53. To perform the integrations, I
used a simple first order routine, stated below in Equation 3.54. FErrors are prop-
agated formally through the summation. The simple integration routine enables

simple error calculations.

|yt de = > (@) (@i =) (3.54)

ACC density measurements are evenly distributed in time, not r or 6, so

not all dr are the same. Uncertainties in the pressure profile are also calculated by
formally propagating errors through a first order summation for the integrations in
Equation 3.51. These formal uncertainties do not consider any effects of the terms
neglected in arriving at Equations 3.29 — 3.30. Monte Carlo simulations could
be used to estimate the effects of these neglected terms on the uncertainty in the

derived wind speed.

The analogous procedure for the case of cyclostrophic balance is as follows:

o (2 paessedr + [0, praess0d) — (JEF pgessrdr + 25 prgeff,ede),g -
Uy = fperi er_ 10 _fpeTi er_ 10 \2- )

erit tanf entry tanf

Unlike the quasi-geostrophic case, the direction of the zonal wind is not
known from this solution, only its magnitude. The direction must be inferred from

other information.

I call this technique for measuring wind speeds using two simultaneous
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density profiles the “Balanced Arch” technique to emphasize (a) the need to balance
one leg of the aerobraking pass against the other and (b) the arched, non-vertical

shape of each leg of the aerobraking pass.

3.8 Validation of “Balanced Arch” Technique

This proposed technique should be tested before results from it are accepted. The
best validation would be to have measurements of winds, densities, and pressures
in the martian upper atmosphere with excellent spatial coverage and resolution,
apply this technique to the densities corresponding to an aerobraking pass, and
test whether the derived wind bears any resemblance to the actual measured winds.
Unfortunately, such a dataset does not exist. I tried a two-stage approach for
validation instead. The first stage was to test this technique on a very simple model
of an atmosphere which satisfies perfectly most of the assumptions made in deriving
Equations 3.29 — 3.30 perfectly. The second stage was to test this technique on a

general circulation model of an atmosphere which does not neglect these terms.

3.8.1 Test on a Simple Atmosphere

To test this technique I created an idealized atmosphere that satisfies Equation 3.1.
It is isothermal (150K), has v, = 0,v = 0, and vy = constant everywhere, includes
rotation at martian angular speeds, has a martian GM, a uniform radius equal
to r,ef, and spherically symmetric ggrq0 equal to GM/rf,ef. Q,GM, and r,.s are
as tabulated in Table 3.1. Periapsis latitude is 45°N and periapsis altitude is 120
km. The aerobraking profile passes through the top of the atmosphere at 30°N and
150 km and its altitude has a quadratic dependence on latitude, as discussed in

Appendix E.

The initial condition for the integration equates the pressure at the top of

the atmosphere to pgH, where H is the density scale height. It is calculated from
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an exponential best-fit (Inp =1In pg — r/H) to the first ten kilometres in altitude of
the density profile. The r range of ten kilometres is chosen as a reasonable a prior:
estimate for the scale height, which is actually 7.6 km. As usual, this estimate for
the top of the atmosphere scale height assumes an isothermal atmosphere (which
happens to be correct in this idealized model) and ignores the effects of latitudinal
changes on the pressure. Equation E.17 shows how a later solution for vy could be
used to account for latitudinal effects, which could be significant on rapidly-rotating
planet or one with very fast zonal wind speeds, but I do not worry about this in the
current work. Errors in this boundary condition become negligible in the pressure

profile at lower altitudes.

Extracting a density profile from this model atmosphere, and then applying
the Balanced Arch technique of Equation 3.53 yields the correct, i. e. the one
specified in the simulation, result for the zonal wind speed. Changing the uniform
zonal wind speed, the uniform temperature, periapsis latitude, latitudinal width of
the pass, periapsis altitude, or the altitude of the top of the atmosphere do not
affect the technique, it still gives the correct result for the applied uniform zonal
wind field. The latitudinal limits on the technique are due to neglected terms
becoming important. In this idealized kind of simulation the neglected terms are

equal to zero, so the limits do not occur.

Next, I set the zonal wind speed equal to 100 m s~ at periapsis and 0 m
s7! at the top of the atmosphere. Zonal wind speed was constant and uniform in
the atmosphere, except across an artificial discontinuity placed at a fixed altitude.
Increasing the boundary altitude between periapsis and the top of the atmosphere
led to a high derived zonal wind speed, and decreasing it led to a low derived zonal
wind speed. For each set of periapsis altitude and latitude, top of the atmosphere
altitude, and temperature, I varied the boundary altitude to find that which gave a
measured zonal wind speed of 50 m s™!, 4. e. the mean of the two extreme values.

The boundary altitude always remained within 2 or 3 km of periapsis, so I conclude

that this technique derives zonal wind speeds that are heavily weighted to periapsis
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altitude.

This is probably due to the weighting by 1/p in Equation 3.30. The greatest
contribution to changes in p, which is what is needed to fix the periapsis pressure
mismatch and constrain vy, occurs when density is the highest, which is at periapsis.
Altitudes where the change in latitude is greatest per unit change in altitude are
also favoured. With a parabolic aerobraking pass, this again causes periapsis to

have the largest effect on the derived zonal wind speed.

I then set the zonal wind speed equal to 100 m s™! at periapsis and 0 m
s7! at the furthest latitudes. Zonal wind speed was constant in the atmosphere,
except across two artificial discontinuities placed at fixed latitudes. Zonal wind
speed was symmetric about periapsis latitude. Moving the boundaries close to
the periapsis latitude led to a low derived zonal wind speed, moving them away
from the periapsis latitude led to a high derived zonal wind speed. The boundary
latitude was always about 25% of the way from periapsis to the furthest latitudes.
For MGS’s aerobraking passes this means that the boundary latitude intersects the

parabolic profile within 2 to 3 km above periapsis.

Derived zonal wind speeds are weighted towards wind speeds at the peri-

apsis latitude and are heavily weighted to those at the periapsis altitude.

3.8.2 MTGCM Testing

Section 3.8.1 shows that zonal wind speeds can be measured using this technique in
an atmosphere that satisfies perfectly the assumptions leading to Equations 3.29 —
3.30. However, in a real atmosphere the neglected terms do not vanish and I tried
to validate this technique on a more realistic atmospheric model. Since the effects
of zonal winds on pressure profiles are predicted to be greatest on Mars, and since
the data analysis sections of this dissertation (Chapter 4) concentrate exclusively

on martian data, I wished to use a more detailed model of the martian atmosphere.
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General Circulation Models include much of the physics that is neglected by impos-
ing quasi-geostrophic balance and are more realistic depictions of the mean state of
an atmosphere. 1 note that they are climate, not weather, models, and so actual
observations contain additional noise and small-scale disturbances that cannot be
included in the GCM. I planned to extract density profiles from GCM simulations
representative of those from MGS aerobraking, apply this technique to measure the
zonal wind speed, and compare the derived zonal wind speed to the actual zonal
wind speed in the simulation. However, when I began working with the data from
simulations, I found problems with the conservation of momentum. The simula-
tions did not appear to be satisfying what I thought were the correct conservation
equations, Equations 3.6 — 3.8. After some experimentation I discovered a problem
with the simulations. They do not exactly conserve the horizontal components of
momentum. The size of the error is comparable to the Coriolis term that I expect
to retain as the only dynamical term. The reason for this problem is a simple one;
the simulations, which require large quantities of supercomputing time, were not
instructed to run for long enough to reach a perfect steady state. They were in-
structed to consider steady state reached when they were actually somewhat away
from a perfect steady state. Additional simulations are in progress which will more
closely approach a perfect steady state and thus have reduced errors in the momen-
tum equations. These results are not yet available, but will be discussed in later

work.



