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APPENDIX E

ESTIMATING THE IMPORTANCE OF LATITUDINAL CHANGES
IN PRESSURE

It is useful to make a simple estimate of how important the effects of latitude are

for influencing derived pressure profiles. Here I outline a technique for doing so.

The conservation of momentum equations for the quasi-cyclostrophic case

are, as in Equations 3.40 — 3.41:

1 0p GM

o =—— (E.1)

v 10,

¢ p
= —— —¢. E.2
rtanf  prof Jef 18 (E-2)

The ideal gas equation of state is:

k

p:p(MBl)T (E.3)

[ assume that g.ss¢ is negligible and that GM/r?* = g is uniform over
the region of interest. I also assume that M,,,; and 7" are uniform. Combining

Equations E.1 and E.3 and the assumptions gives:

1dp dlnp 1
por = or W (E4)



354

where H = kgT/M,,,ig. | also assume that tan @ is constant. This is a
major assumption that is not always appropriate, but it makes generating a rough

estimate for £ much easier. I use ¢ for my constant value of tan 6.

With those assumptions:

(r —ro) N (0 — 6p) vé

Inp=1Inpy — 7 il

(E.5)

r and # do not vary independently. The spacecraft must remain on the
appropriate flight path through the atmosphere. This is shown in Figure E.1 where
ro 1s the value of r at periapsis, g is the value of 8 at periapsis, Ar is the difference
between r at the top of the atmosphere and at periapsis, and A# is the difference
between # at the top of the atmosphere and at periapsis. The “top” of the atmo-
sphere is where the density profile begins and ends. Since the size of the elliptical
orbit is assumed to be much larger than the planet’s radius, the flight path appears

linear in this Figure.

ro = rcos (6 — o) (E.6)
r—rg=ro (m — 1) (E.7)

1
o — - E.
r To To (1 _ (6’—26’0)2 ) ( 8)

r—r0:r0(1+w—1) (E.9)
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Figure E.1: Aerobraking Geometry
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r—ro= ’"2—0(9 — 0y)? (E.10)

I now introduce the superscript “+” to refer to the leg of the aerobraking
pass with 8 > 6y. I later use the superscript “—” to refer to the other leg. The
two legs correspond to the positive and negative square roots in Equation E.10. So

flying along the positive leg of the flight path:

(r —ro) N \/5(7“ — r0)1/2 vfb
H r(l)/QgHt

Inpt =Inpl — (E.11)
The only difference for the other leg is that the sign of the last term on the
right hand side changes. Using gravity as the only force, the usual best estimate

for periapsis pressure is:

ro+Ar +
Pperit.est = Ptopt —I'/ P gdr (E12)

0

The subscript “est” refers to values that are calculated without any con-
sideration of changes with latitude. The subscript “top” refers to values at the top
of the atmosphere, either on inbound or outbound. p* is density measured along
the inbound leg of the flight path. p;,,+ can be related to the measured change in
density with altitude (and latitude) at the top of the flight path.

With the earlier assumptions, density obeys a formula similar to Equa-

tion F.11:

(r —ro) N \/§(T — r0)1/2 vi
H r(l)/QgHt

Inpt =Inpf — (E.13)
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At the top™ position on the flight path, r = ro + Ar and 8 = 0+ /2Ar /1o,
the density is:

Ar (2Ar)% 2
lnpzlnpo——r (24r) v

4+ E.14
H ré/ZgHt ( )

At an altitude H below top™ and displaced in latitude to remain on the
flight path, the density is:

A 2(Ar — H)v?
lnpzlnpo——r—l—l—l— ( )(b

E.15
H Té/ngt ( )

In practice, a scale height would be estimated from a best fit to all measured
densities along the flight path between these two points. Here, I just estimate as if
these are the only two data points. If the estimate for the scale height turns out
to have a large influence on the results, then I will revise this. The estimated scale

height from these two data points is —Az/Aln p:

H

E.16)

V2Arv3 1/2 (

The estimated pressure is the product of p;,,+, ¢, and this:
_Ar V2Ar2
POQH eXp( ﬁ )) <6Xp (7’1/2qu;))
N : s (E.17)
= (1—(1—H/AR)'?)

[ now return to the other part of Equation E.12 — the integration.
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rotAr r—r V2 (r — o) ? 02
Pperit est = Ptopt —I_/ Pog (eXp <_ J7i 0) exp ( ( 0) ¢ dT(E18)

ré/ngt

Let:
_ VE(AN E.19
TS (E.19)

ro “gHt
Let:
H

S E.20
N (E.20)

Substituting z and y into Equation E.12 and redefining r to remove the

r — ro terms:

Ar r o\ 1/2
Pperit est = Ptopt + Pog/o €Xp <_E +z (E) ) dr (EQl)

Let:

(E.22)

Substituting r’ into Equation E.21:

Ar/H He\ V2
Pperit est = Ptopt + POQH/ €Xp —T/ +z (A ) d?“/ (E23)
0 T
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Substituting y into Equation E.23:

1/y

pperi"‘,est - ptop+ —I' POQH/ eXp (_TI —I' wyl/erl/Q) dT/ (E24)
0

Let:

¢ =r (E.25)

Substituting ¢ into Equation E.24:

AV

Pperit est = Prop+ + pog /0 exp (—q* + 2y'/%q) 2qdq (E.26)

Rearranging by completing the square:

1/2

2

1/\/Y Ty
Pperit.est = Ptop+t + ongH/O exp <_ (q _ 7

) +@) qdg  (B.27)

Moving the constant term outside the integration:

zly 1\ zyt/? ?
Pperit.est = Prop+t + QIOOQH exp (T) /0 exp (_ (q - 9 qdq (E28)

Let:

(E.29)
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Substituting s into Equation E.28:

1/2

zy i 9 zy'/?
Pperit est = Ptopt + 21009H exp T o 2y1/2 exp (_S ) 5+ 9 ds (EBO)
T2

Separating the two summed terms comprising the integrand:

72 a_aylf?
Pperit est = Propt + 2I()Og]{ exp (Ty) 0\/111/22 s exp (_52) ds + (E?)l)
=5
/2
22y zyl? o 2y
2pog H exp (T) 5 0_# exp (—32) ds
Performing the two integrations:
2pog H exp (rny) g _ay!/?
Pperit est = Ptopt + 9 [eXp (_82)](;/_?7“!;_/22 + (EBQ)
22 1/2 1 ayt/?
yy Ty
2pogH exp ( 7 ) 5 % lerf (s)]” y;/i
Where I have used:
eXp df =erf(s) (E.33)
7k

Substituting Equations E.19 and E.20 into Equation E.17 and then substi-
tuting that into Equation E.32:

exp (_71) exp ()

Pperit.est = P gH - E.34
P i1 0 1_$<1_(1—y)1/2) ( )
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2 1 2 2
wten(22) oo 5-2) o[ 2))

22y ay'/? /7 1 2y/? zyl/?
QpOgHeXp(T) 5 % erf ﬁ_ 5 —erf|— 5

Cancelling terms:

Proritest X0 () exp (@) _( (
T;JogH _1—x(1y—(1—y)1/2) P

22y l,yl/Q 1 l,yl/Q l,yl/Q
o () 5 (o (G 5) o ()

Combining similar terms:

Pperitest _ -1 e (1= (1—y)"?)
pogH thew ( Y ) exp (2) (1 g (1 (- y)l/Q)) + (E.36)

22y $y1/2 1 $y1/2 l,yl/Z
o () 5 (o (G- 5) o ()

Periapsis pressure can be estimated from this equation. By symmetry, the

other leg’s value of periapsis pressure is the same except for replacing = with —z.

Using Equation E.35 and its twin for p,.,i- .51, an expression can be found for:

E = 2ppe7’i+,est — Pperi—est (E37)

Pperit est + Pperi— est

E represents how measurable the effects of winds are on a density profile.
In the limit that the winds are zero v, = 0, z = 0, and so £ = 0. [ now simplify by

assuming:

T <1 (E.38)



Which leads to:

Since:

And:

aerf(s)_iex

ds /T P
xy”?)%r (L)_
2 / \/y

y <1
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(E.39)

(E.40)

(E.41)

(E.42)

(E.43)

(E.44)

(E.45)

(E.46)
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/2 o 1/2
erf( $2y )—> J;Qy (E.AT)

Putting all this into Equation E.36:

et e _ S\ (a0 (—y/2)
et =t (S0 (R ) e

ﬂ zy'/? W(er (L)_J/‘ylﬂex (—_1) a:yl/Q)
(1+4)2\/_f\/? V7 Py e

The messy fraction simplifies to zy/2:

' . /2 1/2
Pperit est 1 Ty a:yl ( ( 1 ) xy )
——— =1l4exp|—|(1+2z)—+ mlerf{—]+ E.49

pogH p( Y ) ( ) 2 2 vr / VY 2 ( )

Where I have used exp (—1/y) < 1 to eliminate part of the last term on
the right hand side. Now, since erf (1/\/§) — 1:

Pperit est -1 ry $y1/2
——— =1l4exp|— | =+ i E.50
o p(2H) 2+ v (8.50)

Since exp (—1/y) < 1:
' 1/2
pper2+,e.st Ty

— =1+ i E.51
gl 5 VT (E.51)

Pperi— est 18 given by the same equation with the sign of z reversed. Errors
in pyp+ arising from my crude estimate of the scale height do not influence this

result. Using Equation E.37, E is:
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V2 (AR 202 o 12
E= xyl/Zﬁ =7 ¢ <—) Nz E.52
r(l)/QgHt Ar ( )
Rearranging:
2 1/2 2
E={(—] 2 E.53
(rOH) gt ( )

For this quasi-cyclostrophic case, the latitudinal pressure gradient is given

v; _JInp
gHtanf 00

(E.54)

For the quasi-geostrophic case, the latitudinal pressure gradient is given by:

2Qvgrcos  dlnp
gH Y

(E.55)
Similarly to before, I assume that cos# is constant and label it ¢. Since

Ar < rg, | can approximate r in Equation E.55 as ro and the above derivation

remains valid as long as the following transformation is made:

2
Ys

T 2Qugroc (E.56)

This time = and y are given by:

\/§(A7“)1/2 2Qugrgc
r(l)/QgH

(E.57)

xr =
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H
_ E.58
Y= X0 (E.58)
2 /220
E = ay'/?/7 = ( ZO) qusc (E.59)

For Titan, I assume that Ar = 250 km and ¢ = 1 and take all the other
parameters from Table 3.1. 1 find that £ ~ 0.05.

For Mars, I assume that Ar = 30 km and ¢ = 0.7 and take all the other
parameters from Table 3.1. T find that £ ~ 0.2.



