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APPENDIX D

SIMPLIFYING THE VISCOUS TERMS IN EQUATIONS 3.6 — 3.7

In Equation 3.1 the viscous term is ¥V x (nV. x v) /p. This is too complicated
to include directly in the scale analysis of Section 3.2.2. Since 5 is molecular,
not eddy, viscosity, I assume that it is uniform and bring it outside the spatial
derivatives. I need to find a reasonable approximation for V x (¥ x v) in spherical

polar coordinates:
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The importance of the various terms can be estimated by using Equa-

tions 3.14 — 3.16 again:
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Hence:
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Since H < R:
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The dominant terms are:

Vx(Vxup)=—0—0 —§2 (D.9)
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Reintroducing the derivatives in their proper form, I have the following

approximation for V x (V x v):

(D.10)



