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APPENDIX A

CHARACTERIZING THE ZONAL STRUCTURE WITH AN
HARMONIC FIT

Having selected a subset of density measurements in some way, 1 fit a function
to it to quantify the variation in density with longitude. A linear combination of

harmonic functions is a natural choice as the fitted function. I fit:

p = ag+ aicos(A) + bysin(A) + - -+ 4 ag cos(kA) + by sin(kX) (A1)

Where p is density, A is east longitude, and the a; and b; are model param-
eters. This is a wave-k model. There must be enough data points in the subset to
constrain the fit, so there must be at least 2k 4+ 1 data points. It is not possible to
fit fewer data points with a wave-k model. If & is smaller than an optimal value,
then the model does not capture all the information present in the data. If & is
larger than an optimal value, then the model parameters are poorly constrained. I

shall discuss the optimal value of & later in this section.

In general, when fitting a model to data, one should incorporate measure-
ment uncertainties directly into the fitting procedure. However, as I now outline,
that is not appropriate here. The uncertainties quoted for each density measure-
ment in the PDS archive are not formal uncertainties in the strictest sense (Tolson
et al., 2000; Keating et al., 2001a). As described in Tolson et al. (2000), these
uncertainties include contributions from an empirical “quality indicator”. However,

one might still consider using them as if they were formal 1 ¢ uncertainties. There
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is a problem with this approach. The quoted uncertainties each refer to the un-
certainty of an individual measurement. Should a later measurement at exactly
the same longitude obtain the same density within the quoted uncertainty? Not
necessarily. The conditions within the experiment, the martian upper atmosphere,
are beyond our control. They vary, due to weather, between measurements. The
quoted uncertainties are very relevant to each individual measurement. They are
less relevant to the repeatability of each measurement at some later time. The re-
peatability of measurements on a timescale of one sol is addressed in Section 2.4. 1
find that sol-to-sol variability is five times greater than the few percent measurement

uncertainties at 130 km altitude.

The measurement uncertainties are simply inappropriate for direct incor-
poration into the fitting procedure in the manner of page 162 of Bevington (1969).
The appropriate uncertainties are those between repeat measurements taken over
the duration of the experiment. These uncertainties cannot be calculated a priori
using only knowledge of the measurement instrument and measurements from a
single aerobraking pass. I must use the mean square error between the measure-
ments and model predictions as a proxy for the uncertainty in the repeatability
of each measurement following Equation 8.29 of Bevington (1969). The individual
measurement uncertainties do not become comparable to the sol-to-sol variabilities
until altitudes greater than 150 km. Since measurements at altitudes above 150 km
are rarely used in this chapter, I neglect the measurement uncertainties throughout

this chapter.

With the above assumption about dealing with uncertainties, m density
measurements, and n model parameters, the basic model follows Equation 7.18 of

Neter and Wasserman (1974):

Y=Xpte (A.2)

Where Y is an m-element vector of density observations, X is an m-by-n
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matrix, p is an n-element vector of model parameters, and ¢ is an n-element vector

of uncorrelated random variables of mean 0 and standard deviation o.

Using the model outlined in Equation A.1:

Xi1 = cos ()
XZ'Q = sin ()\Z)

a0

2
X1 = sin (M)
2
Po = do (A4)
o= a
p2=b

Pn—2 = drp=1
2

Pn—1 = by
2

The index ¢ labels an individual density measurement. The n variables
(1,cos (A),sin(A),...) being fitted are linearly independent. The least squares so-
lution for the model parameters, p, follows Equation 7.21 of Neter and Wasserman

(1974):

(A.5)
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Where a superscript 1" indicates the transpose of a matrix and the super-
script —1 indicates the inverse of a matrix. Note that the constant density term,
ag or pg, is not formally identical to the mean density. Hence I refer to it as the
constant density term rather than as the zonal mean term. However, the two are

usually similar.

The model predictions, Z, for atmospheric densities at the longitudes at

which measurements have been made follow Equation 7.23 of Neter and Wasserman

(1974):

V-

[

P (A.6)

The covariance matrix for p follows Equation 7.39 of Neter and Wasserman

(1974):

cor(p) = E7) (E21) 1y A

1 o uncertainties in the model parameters are given by:

o, = Covj; (A.8)

Using sine and cosine terms is useful for forming a linear model. However,
it is more useful to interpret paired sine and cosine terms as being a single sinusoid
with an amplitude and a phase. 1 define the phase of a given harmonic as the

longitude of its first peak east of 0°. Thus the phase of the wave-¢ harmonic must

lie between 0° and 360°E/q. ¢ labels a certain harmonic.

a, cos (gA) + b, sin (gA) = R, cos (¢ [A — ay)) (A.9)
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Where R, is the amplitude of the ¢gth harmonic and ¢e, is the phase of the
gth harmonic. Trigonometry yields the following solutions for R, and ¢, in terms

of a, and b,.

R, = (a2 +8)" (A.10)
o, = étan_l (b,/a,) (A.11)

Using the usual formula, Equation 4.9 of Bevington (1969), for transforming

uncertainties of uncorrelated variables:

OR,\’ OR,\’
2 — 2 q 2 q A12
7Ry O (@aq ) T % ( b, ) ( )
da,\’ da,\’
S e (it 21 A.13
Paa = O (aaq> * b, (abq) ( )
a, \’ b, \?
O'Iéq = O'Zq (R#Z) —|— O'qu (qu) (A14>

o = 1me L0k (A.15)

A phase of 3° £ 15° is a perfectly reasonable and meaningful result. An
amplitude of 3 kg km™ £ 15 kg km™ means that the harmonic is not present in

any statistically significant sense and that its corresponding phase is meaningless.
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I generally normalized the zonally-varying terms in each wavefit (R,) by
their constant density term (Ry). This facilitates a comparison of the strength of
the zonal structure between different seasons or altitudes. I use the symbol Bév to

label normalized harmonic amplitudes.

RN = 1 A.16
. (A.16)
ORN\? ORN\’
oiy = o2 ( q) + o2 ( q) A17
RY Ry aRq Ro aBO ( )

———4 =7 A.18
RS TR (A.18)

A 1 o uncertainty about the fitted function can be calculated at any given

longitude following Equation 7.54a of Neter and Wasserman (1974):

() (-y)

m—n

-1
0-}2‘2'25 = <1 + Xzew (iTé) Xnew) (Alg)
where X is an n-element vector whose elements are calculated identically
to those of a single column of X, as in Equation A.3. The longitude used to calculate
X ., 1s that at which the 1 ¢ uncertainty is desired. Formally, this is the 1 o

uncertainty on what a new observation at that longitude might be. The predicted

value of that observation is as in Equation A.6.

Finally, I must quantify the goodness (or otherwise) of the fit. Well-
characterized model parameters are useless in any predictive sense if the fit is poor.
Since I do not know the appropriate uncertainties I cannot use a x? test. This

problem is discussed on page 192 of Bevington (1969).
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[ used an F-test instead and followed Equation 7.30 in Neter and Wasserman
(1974). If there were at least a minimum number of data points, defined later in this
section, used in the fit and this F-test showed a probability of 90% or greater that
not all model parameters beyond the constant density term should be zero, then 1
accepted the fit as good. If not, then I concluded that there was no justification
for modelling the density with anything beyond a constant density term. Bad fits
generally occurred in regions where there were significantly fewer data points than
usual, which might be due to data dropouts or a high rate of periapsis precession
through a given latitude range. Since so many of the bad fits were due to insufficient
data rather than the zonal structure being well-characterized as merely a constant
density term, bad fits are generally ignored in the Figures either by omission or by
interpolating nearby good fits into that region to estimate what the fit would be
like if there were more data. If fewer than the minimum number of data points were

available, then I did not attempt a fit.

To perform an F-test, I calculated:

(Vi-v) (VI-¥)-(¥-v) (¥-Y) m—n
(L-v)" (E-v) "

>

F= (A.20)

Where the scalar Y is the mean of Y and [ is an n-element vector with
all elements equal to 1. This result for F' is then compared against the requisite
statistical distribution, using IDL’s F_PDF function, to find the probability that all
model parameters beyond the constant density term are zero. If this probability

exceeds 10%), then I declare that the fit is bad.

An F-test can, in theory, be used to determine whether to include any
higher-order terms in the fitting function as discussed on page 200 of Bevington
(1969). One might consider beginning with a constant density model, then adding
progressively higher harmonics until the latest addition failed to provide significant

improvement. However, if the zonal structure is dominated, say, by wave-3 and
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wave-4 terms and has only small contributions from wave-1 and wave-2 terms, then
this approach would recommend truncating the fitting function before reaching the

dominant harmonics.

For consistency, the same basic model has to be applied to all subsets of
the data to which I attempt to fit a harmonic model. It is inconsistent to fit,
say, a full wave-4 model to one portion of the data and, say, a constant density
term plus wave-3 and wave-4 terms to another portion of the data. T chose to
truncate my fits at wave-4 throughout Chapter 2. I chose to use a wave-4 model
after extensive experimentation on subsets of data from the Daytime Precession
and Polar Crossing parts of Phase 2. Models with fewer harmonics seemed to me
to have significantly worse fits, on the whole. Models with more harmonics did not
have significantly better fits, though the increase in the number of free parameters
without a corresponding increase in the number of data points to control them led to
increased uncertainties in the solution for the model parameters. Lacking a formal

technique for arriving at this conclusion, I acknowledge that other choices are valid.

A wave-4 model has 9 free parameters and so cannot be fitted to less than 9
data points. If there are only slightly more than 9 data points in a data subset, then
all model parameters are predicted with such large uncertainties as to be useless. |
did not attempt any fits to data subsets with less than 15 data points. If the model
is fit with only slightly more data points than free parameters, then the model
parameters have large uncertainties regardless of whether the model is good or not.
If more data points are used, then large uncertainties in model parameters mean
that the data are more complicated than the simple model. Thus using many data

points increases the meaningfulness of the uncertainties on the model parameters.



